Arduino IDE
Please be sure you have configured your Arduino IDE to work with the GEMMA micro-controller and that the NeoPixel library are installed and working ala strandtest. Once those are in order, proceede to upload some code!
Uploading Code
Copy the code below. In the Arduino IDE, create a new sketch and paste the code inside the new sketch window. In the top menu, select GEMMA 8Mhz from the Tools > Board menu. Select USBtinyISP from the Tools > Programmer menu. Plug in the GEMMA with a USB cable to your computer, wait for the red LED to blink and hit the upload code button. You should be prompted that code was successfully uploaded.
This sketch was developed by Phillip Burgess.
/* ----------------------------------------------------------------------- Hulkbuster Unibeam sketch for Adafruit Gemma & NeoPixels. Requires one 16-pixel NeoPixel ring, one 24-pixel ring, and six single NeoPixels arranged in a large circle. Gemma pin D1 connects to the 24- pixel ring first, then the 6-pixel, then 16...but the physical 'stacking order' is 6 (bottom), then 24, then 16 (top). Add momentary buttons between D1 & GND (mode) and D2 & GND (fire). Unfortunately this ended up resembling an obfuscated C contest entry, and beginners reading it probably won't gain much besides a headache, but I'll comment as best I can. The code is trying to generate some very fluid animation (I don't care for 8-bit-looking twitchy blinky stuff) on a very limited microcontroller (about 5K flash space and no multiply instruction) and thus relies heavily on fixed-point math (using the most-significant digits of large integers to approximate the handling of fractions). Ran out of space toward the end, so parts (like button handling) are a bit slipshod...working but not great. The core idea is that each NeoPixel ring depicts a triangle wave, the phase (rotation) and other parameters can be adjusted on a subpixel basis so it's all buttery smooth. There may be some number of repetitions of the wave (always integer) around the circumference of the ring...for example, as written, it's 3, 4 and 2 reps for the center (16), middle (24) and outer (6 pixel) rings, respectively. If the circles were 'unrolled,' the waves might resemble: /\/\/\ /\/\/\/\ /\/\ Each ring then has different colors corresponding to the 'peaks' and 'troughs' of these waves. Those colors change over time...but never just an abrupt reassignment, there's always a smooth transition from one set of colors to the next. Other parameters, like rotation phase and speed, are also interpolated smoothly through those transitions. Oh, also, there's timer interrupts, another really complicated subject. Sorry about that. -----------------------------------------------------------------------*/ #include <Adafruit_NeoPixel.h> #include <avr/power.h> #ifdef __AVR_ATtiny85__ // Trinket/Gemma: #define LEDPIN 1 // NeoPixels connect here #define MODEPIN 0 // Switch modes w/button between this pin & GND #define FIREPIN 2 // 'Fire' w/button between this pin & GND #else // Arduino Uno & everything else: #define LEDPIN 6 // NeoPixels connect here #define MODEPIN 4 // Mode button between this & GND #define FIREPIN 5 // Fire button between this & GND #endif // Partial color assignments for various ring states; HSV colorspace, // not RGB. Hue is always determined by the current mode, so these // just include saturation and value (brightness). #define IDLE_PEAK_SAT 255 // "Dim" rings #define IDLE_PEAK_VALUE 130 #define IDLE_TROUGH_SAT 255 #define IDLE_TROUGH_VALUE 45 #define BRIGHT_PEAK_SAT 80 // Current "bright" ring #define BRIGHT_PEAK_VALUE 230 #define BRIGHT_TROUGH_SAT 255 #define BRIGHT_TROUGH_VALUE 135 #define AIM_SAT 0 // Ramping up to fire... #define AIM_PEAK_VALUE 140 #define AIM_TROUGH_VALUE 120 #define FIRE_SAT 0 // Firing #define FIRE_VALUE 255 #define DEBOUNCE 10 // Counter limit for mode, fire buttons // Okay, this is just terrible, don't try this at home. I'd been curious // if one could use the preprocessor, not runtime code, to sum values in // a struct array. Here, counting the number of pixels in a list of // NeoPixel rings in order to declare the single Adafruit_NeoPixel strip // length. List can then change without editing the declaration every // time; it follows automatically. Short answer: yes, it can be done. // Long answer: this is a hack and not well-behaved C syntax for anything, // please don't use as a model for your own code, was just an experiment. // List rings here -- index of first LED, number of LEDs, number of wave // repetitions. This is the order in which they're referenced in the // ring[] array later, and doesn't need to match the order in which they're // physically connected. They should not overlap, nor should there be any // gaps. No code is generated here...all just preprocessor shenanigans. #define RING_TABLE \ ring(30, 16, 3) \ ring( 0, 24, 4) \ ring(24, 6, 2) \ // Don't remove this comment // Preprocessor trick counts the total number of LEDs in the list. // Adapted from supercat's code at stackoverflow.com/questions/3539549 #define ring(f,n,r) EN_##n}; enum {EN_SZ_##n=n,EN_TMP_##n=EN_##n+(n-1), enum {EN_IDX=-1, RING_TABLE N_LEDS}; #undef ring // After enumeration, same macro now inits array defaults: #define ring(first,n,r) { first, n, r, {128,128,128}, 0, {0,0,0}, {{{0,0,0}, {0,0,0}}, {{0,0,0}, {0,0,0}}, {{0,0,0}, {0,0,0}}} }, // All so we can do this: Adafruit_NeoPixel strip = Adafruit_NeoPixel(N_LEDS, LEDPIN); // instead of ring[0].length + ring[1].length + ... + ring[2].length // Each ring animates based on one or more full cycles of a triangle wave, // which may be skewed toward a sawtooth wave. RGB colors are interpolated // between the peaks and troughs of the wave. struct Ring { const uint8_t firstLED; // Index of first pixel along full strand const uint8_t nLEDs; // Number of LEDs in ring uint8_t reps; // Number of wave cycles around ring uint8_t peak[3]; // [to/from/current] sawtooth peak offset (0-255) volatile uint16_t phase; // Offset angle (65536 = 360 degrees) volatile int16_t spd[3]; // [to/from/current] phase increment per frame volatile uint8_t color[3][2][3]; // [to/from/current][peak/trough][R,G,B] } ring[] = { RING_TABLE // Macro above expands this into data for all rings }; #define N_RINGS (sizeof(ring) / sizeof(ring[0])) // Each of three animation modes has a distinct color and a rotation // speed/direction for each of the rings. // Clockwise direction is different on 16 pixel ring vs 24 (and the // arrangement of 6 discrete NeoPixels). On 16 pixel ring: + is clockwise, // - is counterclockwise. On 24 pixel ring (and our 6 pixel ring), - is // clockwise, + is counterclockwise. struct Mode { const int16_t hue; const int16_t speed[3]; } modeData[] = { 1100, { 2500, -2000, 1500}, // Blue mode (CW , CW , CCW) 510, { 2500, 2000, -1500}, // Green mode (CW , CCW, CW ) 15, { -2500, -2000, -1500}, // Red mode (CCW, CW , CW ) }; #define N_MODES (sizeof(modeData) / sizeof(modeData[0])) extern const uint8_t gamma8[]; // Table at bottom of this file uint8_t mode = 0, brightRing = N_RINGS - 1; // Counts through rings for pulsing effect volatile uint8_t interpFrames = 0, // Duration of color/speed transition interpolating = 0; // Current transition counter, 0=done // ------------------------------------------------------------------------- void setup() { #if defined(__AVR_ATtiny85__) && (F_CPU == 16000000L) // 16 MHz Trinket? clock_prescale_set(clock_div_1); #endif strip.begin(); strip.show(); // Initialize all pixels to 'off' ASAP pinMode(MODEPIN, INPUT_PULLUP); pinMode(FIREPIN, INPUT_PULLUP); // Configure "bootup" transition setRingsToIdleValues(); startInterp(105); // ~3.5 second startup // Configure Timer/Counter 1 for 30-ish Hz interrupt #ifdef __AVR_ATtiny85__ // Trinket/Gemma: #if (F_CPU == 16000000) // 16 MHz: TCCR1 = _BV(CS13) | _BV(CS12); // 1:2048 prescale #else // 8 MHz: TCCR1 = _BV(CS13) | _BV(CS11) | _BV(CS10); // 1:1024 prescale #endif GTCCR = 0; // No PWM out TIMSK = _BV(TOIE1); // Overflow interrupt #else // Everything else: TCCR1A = _BV(WGM11) | _BV(WGM10); // Mode 15, no PWM out TCCR1B = _BV(WGM13) | _BV(WGM12) | _BV(CS11) | _BV(CS10); // 1:64 prescale OCR1A = F_CPU / 64 / 30; // ~30 Hz cycle TIMSK1 = _BV(TOIE1); // Overflow interrupt #endif // Once the interrupt is enabled, animation (and transitions between // animation states) all occur automatically. We just monitor the // 'interpolating' variable to indicate when the current transition is // done before issuing another. while(interpolating); // Wait for bootup transition to complete } // ------------------------------------------------------------------------- // Don't return until both buttons are released and debounced void waitForButtonRelease() { for(uint8_t i=0;;) { if((digitalRead(MODEPIN) == LOW) || (digitalRead(FIREPIN) == LOW)) i=0; else if(++i >= DEBOUNCE) return; } } // Set all rings to 'dim' colors for current mode void setRingsToIdleValues() { for(uint8_t r=0; r<N_RINGS; r++) { setTargetColor(r, modeData[mode].hue, IDLE_PEAK_SAT, IDLE_PEAK_VALUE, IDLE_TROUGH_SAT, IDLE_TROUGH_VALUE); setTargetSpeed(r, modeData[mode].speed[r]); } } void nextMode() { setRingsToIdleValues(); // Bright ring will fade off for(startInterp(10); interpolating; ); // ~1/3 sec transition if(++mode >= N_MODES) mode = 0; // Advance/wrap mode counter setRingsToIdleValues(); // Set new colors/speeds brightRing = N_RINGS - 1; // Start w/center after transition for(startInterp(45); interpolating; ); // ~1.5 sec. transition waitForButtonRelease(); } void fire() { uint8_t r; setRingsToIdleValues(); // Bright ring will fade off for(startInterp(10); interpolating; ); // ~1/3 sec transition for(r=0; r<N_RINGS; r++) { // All rings fade to 'aim' state... setTargetColor(r, modeData[mode].hue, AIM_SAT, AIM_PEAK_VALUE, AIM_SAT, AIM_TROUGH_VALUE); setTargetSpeed(r, modeData[mode].speed[r] * 10); } for(startInterp(105); interpolating; ); // 3.5 sec warmup transition for(startInterp( 40); interpolating; ); // 1.3 sec hold for(r=0; r<N_RINGS; r++) { // All rings fade to 'fire' state... setTargetColor(r, modeData[mode].hue, FIRE_SAT, FIRE_VALUE, FIRE_SAT, FIRE_VALUE); } for(startInterp(7); interpolating; ); // ~1/4 sec ramp up..."boom" setRingsToIdleValues(); // Fade back to prior colors for(startInterp(120); interpolating; ); // ~4 sec cool-down brightRing = N_RINGS - 1; // Resume @ center after firing waitForButtonRelease(); } void loop() { uint8_t pinState, priorPinState, debounceCounter, nextAction = 0; // For next transition...first, set bright ring back to idle color... setTargetColor(brightRing, modeData[mode].hue, IDLE_PEAK_SAT, IDLE_PEAK_VALUE, IDLE_TROUGH_SAT, IDLE_TROUGH_VALUE); if(++brightRing >= N_RINGS) brightRing = 0; // Next ring // ...then set new ring to bright state... setTargetColor(brightRing, modeData[mode].hue, BRIGHT_PEAK_SAT, BRIGHT_PEAK_VALUE, BRIGHT_TROUGH_SAT, BRIGHT_TROUGH_VALUE); startInterp(18); // Start pulse transition, about 2/3 sec // While the transition takes place, we can do other things, like // poll the buttons for mode change or fire events... priorPinState = digitalRead(MODEPIN) + (digitalRead(FIREPIN) << 1); debounceCounter = 0; while(interpolating) { // Still transitioning... if(nextAction) continue; // Once action is decided, stop polling buttons pinState = digitalRead(MODEPIN) + (digitalRead(FIREPIN) << 1); if(pinState == priorPinState) { if(++debounceCounter >= DEBOUNCE) nextAction = pinState; } else { debounceCounter = 0; priorPinState = pinState; } } // Downside is that mode/fire actions don't take place until the prior // transition ends (worst case, about 2/3 sec.), so this sometimes // requires a bit of button mashing. I'd been working on making the // pulse transitions interruptible but ran out of code space. Ah well, // it's for a fun cosplay thing, not a cure for rocket surgery. if(nextAction == 1) nextMode(); else if(nextAction == 2) fire(); } // Set ring colors for the next transition void setTargetColor( uint8_t r, int16_t h, // Ring index, hue uint8_t sPeak , uint8_t vPeak, // Saturation & value @ peak uint8_t sTrough, uint8_t vTrough) { // Saturation & value @ trough uint32_t cPeak = hsv2rgb(h, sPeak , vPeak), // Color @ peak cTrough = hsv2rgb(h, sTrough, vTrough); // Color @ trough ring[r].color[1][0][0] = cPeak >> 16; ring[r].color[1][0][1] = cPeak >> 8; ring[r].color[1][0][2] = cPeak; ring[r].color[1][1][0] = cTrough >> 16; ring[r].color[1][1][1] = cTrough >> 8; ring[r].color[1][1][2] = cTrough; } // Set ring speed for the next transition void setTargetSpeed(uint8_t r, int16_t s) { ring[r].spd[1] = s; ring[r].peak[1] = (s > 0) ? 48 : 208; } // Begin transition void startInterp(uint8_t n) { interpFrames = n; interpolating = n; } // ------------------------------------------------------------------------- // Fixed-point colorspace conversion: HSV (hue-saturation-value) to RGB. uint32_t hsv2rgb(int16_t h, uint8_t s, uint8_t v) { uint8_t n, r, g, b; // Hue circle = 1530 circumference (NOT 1536!) h %= 1530; // -1529 to +1529 if(h < 0) h += 1530; // 0 to +1529 n = h % 255; // Angle within sextant; 0 to 254 (NOT 255!) switch(h / 255) { // Sextant number; 0 to 5 case 0 : r = 255 ; g = n ; b = 0 ; break; // R to Y case 1 : r = 254 - n; g = 255 ; b = 0 ; break; // Y to G case 2 : r = 0 ; g = 255 ; b = n ; break; // G to C case 3 : r = 0 ; g = 254 - n; b = 255 ; break; // C to B case 4 : r = n ; g = 0 ; b = 255 ; break; // B to M default: r = 255 ; g = 0 ; b = 254 - n; break; // M to R } uint32_t v1 = 1 + v; // 1 to 256; allows >>8 instead of /255 uint16_t s1 = 1 + s; // 1 to 256; same reason uint8_t s2 = 255 - s; // 255 to 0 return ((((((r * s1) >> 8) + s2) * v1) & 0xff00) << 8) | // MAF! (((((g * s1) >> 8) + s2) * v1) & 0xff00) | ( ((((b * s1) >> 8) + s2) * v1) >> 8); } ISR(TIMER1_OVF_vect) { // Timer/Counter 1 overflow, configured for ~30 Hz uint8_t i, r, y, l, x8; uint16_t ps, ts, x, xinc, n; // Refresh the strip with results calculated during the -prior- frame. // Ensures a uniform frame rate; calc time for each frame may vary. strip.show(); for(r=0; r<N_RINGS; r++) { // For each ring... l = ring[r].firstLED; // l = current LED index x = ring[r].phase; // x = ring rotation (65536 = 360 degrees) xinc = (uint16_t)(65536L * ring[r].reps / ring[r].nLEDs); for(i=0; i<ring[r].nLEDs; i++, x += xinc) { // Each LED on current ring... x8 = x >> 8; y = (x8 < ring[r].peak[2] ) ? // Which side of triangle wave? ( (uint16_t)x8 * 255) / ring[r].peak[2] : // Rising edge ((256 - (uint16_t)x8) * 255) / (256 - ring[r].peak[2]); // Falling edge // y is blending factor (0-255) between peak & trough colors ps = y + 1; // Peak color scale factor (1-256) ts = 257 - ps; // Trough color scale factor (1-256, inverse of peak) // Blend peak & trough RGB, process through gamma correction table strip.setPixelColor(l++, // and store resulting color pgm_read_byte(&gamma8[(ring[r].color[2][0][0] * ps + ring[r].color[2][1][0] * ts) >> 8]), pgm_read_byte(&gamma8[(ring[r].color[2][0][1] * ps + ring[r].color[2][1][1] * ts) >> 8]), pgm_read_byte(&gamma8[(ring[r].color[2][0][2] * ps + ring[r].color[2][1][2] * ts) >> 8])); } ring[r].phase += ring[r].spd[2]; // Rotate ring for next frame } if(interpolating) { // Frame-to-frame speed & color interpolation if(!--interpolating) { // Interpolation target reached? // Set current & prior color & speed to target values for(r=0; r<N_RINGS; r++) { for(x=0; x<2; x++) { for(i=0; i<3; i++) { ring[r].color[2][x][i] = ring[r].color[1][x][i]; ring[r].color[0][x][i] = ring[r].color[1][x][i]; } } ring[r].spd[2] = ring[r].spd[0] = ring[r].spd[1]; ring[r].peak[2] = ring[r].peak[0] = ring[r].peak[1]; } } else { n = 257 - (((uint16_t)interpolating << 8) / interpFrames); for(r=0; r<N_RINGS; r++) { // For each ring... ring[r].spd[2] = ring[r].spd[0] + (((uint32_t)(ring[r].spd[1] - ring[r].spd[0]) * n) >> 8); ring[r].peak[2] = ring[r].peak[0] + (((uint32_t)(ring[r].peak[1] - ring[r].peak[0]) * n) >> 8); for(x=0; x<2; x++) { // Wave peak, trough for(i=0; i<3; i++) { // R,G,B ring[r].color[2][x][i] = ring[r].color[0][x][i] + (((ring[r].color[1][x][i] - ring[r].color[0][x][i]) * n) >> 8); } } } } } } const uint8_t PROGMEM gamma8[] = { // x^2.8 improves appearance of midrange colors 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25, 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36, 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99,101,102,104,105,107,109,110,112,114, 115,117,119,120,122,124,126,127,129,131,133,135,137,138,140,142, 144,146,148,150,152,154,156,158,160,162,164,167,169,171,173,175, 177,180,182,184,186,189,191,193,196,198,200,203,205,208,210,213, 215,218,220,223,225,228,231,233,236,239,241,244,247,249,252,255 };
Text editor powered by tinymce.