Use the microphone on your Adafruit CLUE to measure the different frequencies that are present in sound, and display it on the LCD display. This shows the author whistling up and down a musical scale.
The program is below. The program samples audio for a short time and then computes the fast Fourier transform (FFT) of the audio data. FFT is a way of turning a series of samples over time into a list of the relative intensity of each frequency in a range.
While running the demo, here are some things you might like to try:
- Sing or whistle a musical scale
- Look at the difference between saying "ah", "th", and "sss"
- See how your favorite music looks when you transform it by FFT
(Note that because the program alternates between recording sound and doing computations, it can miss registering short sounds like claps)
# SPDX-FileCopyrightText: 2020 Jeff Epler for Adafruit Industries # # SPDX-License-Identifier: MIT """Waterfall FFT demo adapted from https://teaandtechtime.com/fft-circuitpython-library/ to work with ulab on Adafruit CLUE""" import array import board import audiobusio import displayio from ulab import numpy as np try: from ulab.utils import spectrogram except ImportError: from ulab.scipy.signal import spectrogram display = board.DISPLAY # Create a heatmap color palette palette = displayio.Palette(52) # fmt: off for i, pi in enumerate((0xff0000, 0xff0a00, 0xff1400, 0xff1e00, 0xff2800, 0xff3200, 0xff3c00, 0xff4600, 0xff5000, 0xff5a00, 0xff6400, 0xff6e00, 0xff7800, 0xff8200, 0xff8c00, 0xff9600, 0xffa000, 0xffaa00, 0xffb400, 0xffbe00, 0xffc800, 0xffd200, 0xffdc00, 0xffe600, 0xfff000, 0xfffa00, 0xfdff00, 0xd7ff00, 0xb0ff00, 0x8aff00, 0x65ff00, 0x3eff00, 0x17ff00, 0x00ff10, 0x00ff36, 0x00ff5c, 0x00ff83, 0x00ffa8, 0x00ffd0, 0x00fff4, 0x00a4ff, 0x0094ff, 0x0084ff, 0x0074ff, 0x0064ff, 0x0054ff, 0x0044ff, 0x0032ff, 0x0022ff, 0x0012ff, 0x0002ff, 0x0000ff)): # fmt: on palette[51-i] = pi class RollingGraph(displayio.TileGrid): def __init__(self, scale=2): # Create a bitmap with heatmap colors self._bitmap = displayio.Bitmap(display.width//scale, display.height//scale, len(palette)) super().__init__(self._bitmap, pixel_shader=palette) self.scroll_offset = 0 def show(self, data): y = self.scroll_offset bitmap = self._bitmap board.DISPLAY.auto_refresh = False offset = max(0, (bitmap.width-len(data))//2) for x in range(min(bitmap.width, len(data))): bitmap[x+offset, y] = int(data[x]) board.DISPLAY.auto_refresh = True self.scroll_offset = (y + 1) % self.bitmap.height group = displayio.Group(scale=3) graph = RollingGraph(3) fft_size = 256 # Add the TileGrid to the Group group.append(graph) # Add the Group to the Display display.root_group = group # instantiate board mic mic = audiobusio.PDMIn(board.MICROPHONE_CLOCK, board.MICROPHONE_DATA, sample_rate=16000, bit_depth=16) #use some extra sample to account for the mic startup samples_bit = array.array('H', [0] * (fft_size+3)) # Main Loop def main(): max_all = 10 while True: mic.record(samples_bit, len(samples_bit)) samples = np.array(samples_bit[3:]) spectrogram1 = spectrogram(samples) # spectrum() is always nonnegative, but add a tiny value # to change any zeros to nonzero numbers spectrogram1 = np.log(spectrogram1 + 1e-7) spectrogram1 = spectrogram1[1:(fft_size//2)-1] min_curr = np.min(spectrogram1) max_curr = np.max(spectrogram1) if max_curr > max_all: max_all = max_curr else: max_curr = max_curr-1 print(min_curr, max_all) min_curr = max(min_curr, 3) # Plot FFT data = (spectrogram1 - min_curr) * (51. / (max_all - min_curr)) # This clamps any negative numbers to zero data = data * np.array((data > 0)) graph.show(data) main()
Text editor powered by tinymce.