If you're sending packets in strange formats or encodings (like we are!), The Things Network Console has a programmable data decoder to decode the packets, and assign useful labels to the data.
Copy and paste the decoder script below into the decoder's integrated text editor and click save.
Then, click the data tab. Next to the raw payload data, you should see the decoded data for humidity and temperature.
// TTN Decoder for TTN OTAA Feather US915 DHT22 Sketch // Link: https://github.com/mcci-catena/arduino-lmic/blob/master/examples/ttn-otaa-feather-us915-dht22/ttn-otaa-feather-us915-dht22.ino function Decoder(bytes, port) { // Decode an uplink message from a buffer // (array) of bytes to an object of fields. var decoded = {}; // temperature rawTemp = bytes[0] + bytes[1] * 256; decoded.degreesC = sflt162f(rawTemp) * 100; // humidity rawHumid = bytes[2] + bytes[3] * 256; decoded.humidity = sflt162f(rawHumid) * 100; return decoded; } function sflt162f(rawSflt16) { // rawSflt16 is the 2-byte number decoded from wherever; // it's in range 0..0xFFFF // bit 15 is the sign bit // bits 14..11 are the exponent // bits 10..0 are the the mantissa. Unlike IEEE format, // the msb is transmitted; this means that numbers // might not be normalized, but makes coding for // underflow easier. // As with IEEE format, negative zero is possible, so // we special-case that in hopes that JavaScript will // also cooperate. // // The result is a number in the open interval (-1.0, 1.0); // // throw away high bits for repeatability. rawSflt16 &= 0xFFFF; // special case minus zero: if (rawSflt16 == 0x8000) return -0.0; // extract the sign. var sSign = ((rawSflt16 & 0x8000) != 0) ? -1 : 1; // extract the exponent var exp1 = (rawSflt16 >> 11) & 0xF; // extract the "mantissa" (the fractional part) var mant1 = (rawSflt16 & 0x7FF) / 2048.0; // convert back to a floating point number. We hope // that Math.pow(2, k) is handled efficiently by // the JS interpreter! If this is time critical code, // you can replace by a suitable shift and divide. var f_unscaled = sSign * mant1 * Math.pow(2, exp1 - 15); return f_unscaled; }
// SPDX-FileCopyrightText: 2015 Thomas Telkamp // SPDX-FileCopyrightText: 2015 Matthijs Kooijman // SPDX-FileCopyrightText: 2018 Terry Moore for MCCI // SPDX-FileCopyrightText: 2018 Brent Rubell for Adafruit Industries // // SPDX-License-Identifier: MIT /******************************************************************************* * The Things Network - Sensor Data Example * * Example of sending a valid LoRaWAN packet with DHT22 temperature and * humidity data to The Things Networ using a Feather M0 LoRa. * * Learn Guide: https://learn.adafruit.com/the-things-network-for-feather * * Copyright (c) 2015 Thomas Telkamp and Matthijs Kooijman * Copyright (c) 2018 Terry Moore, MCCI * Copyright (c) 2018 Brent Rubell, Adafruit Industries * * Permission is hereby granted, free of charge, to anyone * obtaining a copy of this document and accompanying files, * to do whatever they want with them without any restriction, * including, but not limited to, copying, modification and redistribution. * NO WARRANTY OF ANY KIND IS PROVIDED. *******************************************************************************/ #include <lmic.h> #include <hal/hal.h> #include <SPI.h> // include the DHT22 Sensor Library #include "DHT.h" // DHT digital pin and sensor type #define DHTPIN 10 #define DHTTYPE DHT22 // This EUI must be in little-endian format, so least-significant-byte // first. When copying an EUI from ttnctl output, this means to reverse // the bytes. For TTN issued EUIs the last bytes should be 0xD5, 0xB3, // 0x70. static const u1_t PROGMEM APPEUI[8] = { FILLMEIN }; void os_getArtEui (u1_t* buf) { memcpy_P(buf, APPEUI, 8);} // This should also be in little endian format, see above. static const u1_t PROGMEM DEVEUI[8] = { FILLMEIN }; void os_getDevEui (u1_t* buf) { memcpy_P(buf, DEVEUI, 8);} // This key should be in big endian format (or, since it is not really a // number but a block of memory, endianness does not really apply). In // practice, a key taken from the TTN console can be copied as-is. static const u1_t PROGMEM APPKEY[16] = { FILLMEIN }; void os_getDevKey (u1_t* buf) { memcpy_P(buf, APPKEY, 16);} // payload to send to TTN gateway static uint8_t payload[5]; static osjob_t sendjob; // Schedule TX every this many seconds (might become longer due to duty // cycle limitations). const unsigned TX_INTERVAL = 30; // Pin mapping for Adafruit Feather M0 LoRa const lmic_pinmap lmic_pins = { .nss = 8, .rxtx = LMIC_UNUSED_PIN, .rst = 4, .dio = {3, 6, LMIC_UNUSED_PIN}, .rxtx_rx_active = 0, .rssi_cal = 8, // LBT cal for the Adafruit Feather M0 LoRa, in dB .spi_freq = 8000000, }; // init. DHT DHT dht(DHTPIN, DHTTYPE); void onEvent (ev_t ev) { Serial.print(os_getTime()); Serial.print(": "); switch(ev) { case EV_SCAN_TIMEOUT: Serial.println(F("EV_SCAN_TIMEOUT")); break; case EV_BEACON_FOUND: Serial.println(F("EV_BEACON_FOUND")); break; case EV_BEACON_MISSED: Serial.println(F("EV_BEACON_MISSED")); break; case EV_BEACON_TRACKED: Serial.println(F("EV_BEACON_TRACKED")); break; case EV_JOINING: Serial.println(F("EV_JOINING")); break; case EV_JOINED: Serial.println(F("EV_JOINED")); { u4_t netid = 0; devaddr_t devaddr = 0; u1_t nwkKey[16]; u1_t artKey[16]; LMIC_getSessionKeys(&netid, &devaddr, nwkKey, artKey); Serial.print("netid: "); Serial.println(netid, DEC); Serial.print("devaddr: "); Serial.println(devaddr, HEX); Serial.print("artKey: "); for (int i=0; i<sizeof(artKey); ++i) { if (i != 0) Serial.print("-"); Serial.print(artKey[i], HEX); } Serial.println(""); Serial.print("nwkKey: "); for (int i=0; i<sizeof(nwkKey); ++i) { if (i != 0) Serial.print("-"); Serial.print(nwkKey[i], HEX); } Serial.println(""); } // Disable link check validation (automatically enabled // during join, but because slow data rates change max TX // size, we don't use it in this example. LMIC_setLinkCheckMode(0); break; /* || This event is defined but not used in the code. No || point in wasting codespace on it. || || case EV_RFU1: || Serial.println(F("EV_RFU1")); || break; */ case EV_JOIN_FAILED: Serial.println(F("EV_JOIN_FAILED")); break; case EV_REJOIN_FAILED: Serial.println(F("EV_REJOIN_FAILED")); break; break; case EV_TXCOMPLETE: Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)")); digitalWrite(LED_BUILTIN, LOW); if (LMIC.txrxFlags & TXRX_ACK) Serial.println(F("Received ack")); if (LMIC.dataLen) { Serial.println(F("Received ")); Serial.println(LMIC.dataLen); Serial.println(F(" bytes of payload")); } // Schedule next transmission os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_INTERVAL), do_send); break; case EV_LOST_TSYNC: Serial.println(F("EV_LOST_TSYNC")); break; case EV_RESET: Serial.println(F("EV_RESET")); break; case EV_RXCOMPLETE: // data received in ping slot Serial.println(F("EV_RXCOMPLETE")); break; case EV_LINK_DEAD: Serial.println(F("EV_LINK_DEAD")); break; case EV_LINK_ALIVE: Serial.println(F("EV_LINK_ALIVE")); break; /* || This event is defined but not used in the code. No || point in wasting codespace on it. || || case EV_SCAN_FOUND: || Serial.println(F("EV_SCAN_FOUND")); || break; */ case EV_TXSTART: Serial.println(F("EV_TXSTART")); digitalWrite(LED_BUILTIN, HIGH); break; default: Serial.print(F("Unknown event: ")); Serial.println((unsigned) ev); break; } } void do_send(osjob_t* j){ // Check if there is not a current TX/RX job running if (LMIC.opmode & OP_TXRXPEND) { Serial.println(F("OP_TXRXPEND, not sending")); } else { // read the temperature from the DHT22 float temperature = dht.readTemperature(); Serial.print("Temperature: "); Serial.print(temperature); Serial.println(" *C"); // adjust for the f2sflt16 range (-1 to 1) temperature = temperature / 100; // read the humidity from the DHT22 float rHumidity = dht.readHumidity(); Serial.print("%RH "); Serial.println(rHumidity); // adjust for the f2sflt16 range (-1 to 1) rHumidity = rHumidity / 100; // float -> int // note: this uses the sflt16 datum (https://github.com/mcci-catena/arduino-lmic#sflt16) uint16_t payloadTemp = LMIC_f2sflt16(temperature); // int -> bytes byte tempLow = lowByte(payloadTemp); byte tempHigh = highByte(payloadTemp); // place the bytes into the payload payload[0] = tempLow; payload[1] = tempHigh; // float -> int uint16_t payloadHumid = LMIC_f2sflt16(rHumidity); // int -> bytes byte humidLow = lowByte(payloadHumid); byte humidHigh = highByte(payloadHumid); payload[2] = humidLow; payload[3] = humidHigh; // prepare upstream data transmission at the next possible time. // transmit on port 1 (the first parameter); you can use any value from 1 to 223 (others are reserved). // don't request an ack (the last parameter, if not zero, requests an ack from the network). // Remember, acks consume a lot of network resources; don't ask for an ack unless you really need it. LMIC_setTxData2(1, payload, sizeof(payload)-1, 0); } // Next TX is scheduled after TX_COMPLETE event. } void setup() { delay(5000); while (! Serial); Serial.begin(9600); Serial.println(F("Starting")); pinMode(LED_BUILTIN, OUTPUT); // dht init. dht.begin(); // LMIC init. os_init(); // Reset the MAC state. Session and pending data transfers will be discarded. LMIC_reset(); // Disable link-check mode and ADR, because ADR tends to complicate testing. LMIC_setLinkCheckMode(0); // Set the data rate to Spreading Factor 7. This is the fastest supported rate for 125 kHz channels, and it // minimizes air time and battery power. Set the transmission power to 14 dBi (25 mW). LMIC_setDrTxpow(DR_SF7,14); // in the US, with TTN, it saves join time if we start on subband 1 (channels 8-15). This will // get overridden after the join by parameters from the network. If working with other // networks or in other regions, this will need to be changed. LMIC_selectSubBand(1); // Start job (sending automatically starts OTAA too) do_send(&sendjob); } void loop() { // we call the LMIC's runloop processor. This will cause things to happen based on events and time. One // of the things that will happen is callbacks for transmission complete or received messages. We also // use this loop to queue periodic data transmissions. You can put other things here in the `loop()` routine, // but beware that LoRaWAN timing is pretty tight, so if you do more than a few milliseconds of work, you // will want to call `os_runloop_once()` every so often, to keep the radio running. os_runloop_once(); }
Page last edited January 22, 2025
Text editor powered by tinymce.