Machine learning has come to the 'edge' - small microcontrollers that can run a very miniature version of TensorFlow Lite to do ML computations.
But you don't need super complex hardware to start developing your own TensorFlow models! We've curated a simple kit to dip your toes into machine learning waters.
Kit includes:
- Adafruit PyBadge with SAMD51 Cortex M4F processor @ 120MHz, with display, speaker and buttons
- Electret Microphone Amplifier - MAX4466 with Adjustable Gain
- JST PH 3-Pin to Female Socket Cable - 200mm
- Lithium Ion Polymer Battery with Short Cable - 3.7V 350mAh
The kit uses our PyBadge as your edge processor. It's a compact board - it's credit card sized. It's powered by our favorite chip, the ATSAMD51, with 512KB of flash and 192KB of RAM. We add 2 MB of QSPI flash for file storage, handy for TensorFlow Lite files, images, fonts, sounds, or other assets.
You can plug in a microphone into the ports at the bottom, to add microphone input for micro speech recognition. Our Arduino library has some demos you can get started with to recognize various word pairs like "yes/no", "up/down" and "cat/dog". TensorFlow Lite for microcontrollers is very cutting-edge so expect to see a lot of development happening in this area, with lots of code and process changes.
Or as individual parts:
Text editor powered by tinymce.