There are two pieces to the code.  First is code from which they have written to interface with the Pulse Sensor.  Second is the code to read the sensor values and translate heartbeart information into brightness values for the NeoPixels.

The code for the sensor, interrupt.ino, is shown below.  A detailed description on how it works is on the website.  Copy the code and place it in the same file directory as the main code, calling the file interrupt.ino.

This code uses the Pulse Sensor Amped by Joel Murphy and Yury Gitman 
    >>> Pulse Sensor purple wire goes to Analog Pin 0 <<<
Pulse Sensor sample aquisition and processing happens in the background via Timer 2 interrupt. 2mS sample rate.
PWM on pins 3 and 11 will not work when using this code, because we are using Timer 2!
The following variables are automatically updated:
Signal :    int that holds the analog signal data straight from the sensor. updated every 2mS.
IBI  :      int that holds the time interval between beats. 2mS resolution.
BPM  :      int that holds the heart rate value, derived every beat, from averaging previous 10 IBI values.
QS  :       boolean that is made true whenever Pulse is found and BPM is updated. User must reset.
Pulse :     boolean that is true when a heartbeat is sensed then false in time with pin13 LED going out.

NOTE: This code works with Arduino UNO or Arduino PRO or Arduino Pro Mini 5V or any Arduino running with an 
ATmega328 and 16MHz clock. This will disable PWM output on pin 3 and 11. Also, it will disable the tone() command. 

All the work to find the heartbeat and determine the heartrate happens in the code below.
For using the Pulse Sensor code, see the link below for a code walkthrough:

Code Version 02 by Joel Murphy & Yury Gitman  Fall 2012

volatile int rate[10];                    // used to hold last ten IBI values
volatile unsigned long sampleCounter = 0;          // used to determine pulse timing
volatile unsigned long lastBeatTime = 0;           // used to find the inter beat interval
volatile int P =512;                      // used to find peak in pulse wave
volatile int T = 512;                     // used to find trough in pulse wave
volatile int thresh = 512;                // used to find instant moment of heart beat
volatile int amp = 100;                   // used to hold amplitude of pulse waveform
volatile boolean firstBeat = true;        // used to seed rate array so we startup with reasonable BPM
volatile boolean secondBeat = true;       // used to seed rate array so we startup with reasonable BPM

void interruptSetup(){     
  // Initializes Timer2 to throw an interrupt every 2mS.
  sei();             // MAKE SURE GLOBAL INTERRUPTS ARE ENABLED      

// Timer 2 makes sure that we take a reading every 2 miliseconds
ISR(TIMER2_COMPA_vect){                         // triggered when Timer2 counts to 124
    cli();                                      // disable interrupts while we do this
    Signal = analogRead(pulsePin);              // read the Pulse Sensor 
    sampleCounter += 2;                         // keep track of the time in mS with this variable
    int N = sampleCounter - lastBeatTime;       // monitor the time since the last beat to avoid noise

//  find the peak and trough of the pulse wave
    if(Signal < thresh && N > (IBI/5)*3){       // avoid dichrotic noise by waiting 3/5 of last IBI
        if (Signal < T){                        // T is the trough
            T = Signal;                         // keep track of lowest point in pulse wave 
    if(Signal > thresh && Signal > P){          // thresh condition helps avoid noise
        P = Signal;                             // P is the peak
       }                                        // keep track of highest point in pulse wave
  // signal surges up in value every time there is a pulse
if (N > 250){                                   // avoid high frequency noise
  if ( (Signal > thresh) && (Pulse == false) && (N > (IBI/5)*3) ){        
    Pulse = true;                               // set the Pulse flag when we think there is a pulse
    digitalWrite(blinkPin,HIGH);                // turn on pin 13 LED
    IBI = sampleCounter - lastBeatTime;         // measure time between beats in mS
    lastBeatTime = sampleCounter;               // keep track of time for next pulse
         if(firstBeat){                         // if it's the first time we found a beat, if firstBeat == TRUE
             firstBeat = false;                 // clear firstBeat flag
             return;                            // IBI value is unreliable so discard it
         if(secondBeat){                        // if this is the second beat, if secondBeat == TRUE
            secondBeat = false;                 // clear secondBeat flag
               for(int i=0; i<=9; i++){         // seed the running total to get a realisitic BPM at startup
                    rate[i] = IBI;                      
    // keep a running total of the last 10 IBI values
    word runningTotal = 0;                   // clear the runningTotal variable    

    for(int i=0; i<=8; i++){                // shift data in the rate array
          rate[i] = rate[i+1];              // and drop the oldest IBI value 
          runningTotal += rate[i];          // add up the 9 oldest IBI values
    rate[9] = IBI;                          // add the latest IBI to the rate array
    runningTotal += rate[9];                // add the latest IBI to runningTotal
    runningTotal /= 10;                     // average the last 10 IBI values 
    BPM = 60000/runningTotal;               // how many beats can fit into a minute? that's BPM!
    QS = true;                              // set Quantified Self flag 

  if (Signal < thresh && Pulse == true){     // when the values are going down, the beat is over
      digitalWrite(blinkPin,LOW);            // turn off pin 13 LED
      Pulse = false;                         // reset the Pulse flag so we can do it again
      amp = P - T;                           // get amplitude of the pulse wave
      thresh = amp/2 + T;                    // set thresh at 50% of the amplitude
      P = thresh;                            // reset these for next time
      T = thresh;
  if (N > 2500){                             // if 2.5 seconds go by without a beat
      thresh = 512;                          // set thresh default
      P = 512;                               // set P default
      T = 512;                               // set T default
      lastBeatTime = sampleCounter;          // bring the lastBeatTime up to date        
      firstBeat = true;                      // set these to avoid noise
      secondBeat = true;                     // when we get the heartbeat back
  sei();                                     // enable interrupts when youre done!
}// end isr

The main program melds the pulse sensor reading with NeoPixel output.

/* Pulse Sensor Amped with NeoPixels

Pulse an arbitrary number of Adafruit NeoPixels based on a heartbeat sensor

The code needs to be in module interrupt.ino in the sketch directory
Code also uses the Adafruit NeoPixel library code discussed at

Version 1.0 by Mike Barela for Adafruit Industries, Fall 2015 
#include <Adafruit_NeoPixel.h>    // Library containing 

// Behavior setting variables
int pulsePin = 0;                 // Pulse Sensor purple wire connected to analog pin 0
int blinkPin = 13;                // Digital pin to blink led at each beat
int fadePin  = 5;                 // pin to do fancy neopixel effects at each beat
int fadeRate = 0;                 // used to fade LED on with PWM on fadePin

// these variables are volatile because they are used during the interrupt service routine
volatile int BPM;                   // used to hold the pulse rate
volatile int Signal;                // holds the incoming raw data
volatile int IBI = 600;             // holds the time between beats, the Inter-Beat Interval
volatile boolean Pulse = false;     // true when pulse wave is high, false when it's low
volatile boolean QS = false;        // becomes true when Arduoino finds a beat.

// Set up use of NeoPixels
const int NUMPIXELS = 24;           // Put the number of NeoPixels you are using here
const int BRIGHTNESS = 60;          // Set brightness of NeoPixels here
Adafruit_NeoPixel strip = Adafruit_NeoPixel(NUMPIXELS, fadePin, NEO_GRB + NEO_KHZ800);

void setup(){
  pinMode(blinkPin,OUTPUT);         // pin that will blink to your heartbeat!
//  Serial.begin(115200);           // Serial output data for debugging or external use
  for (int x=0; x < NUMPIXELS; x++) {  // Initialize all pixels to 'off'
     strip.setPixelColor(x, strip.Color(0, 0, 0));
  };                     // Ensure the pixels are off 
  delay(1000);                      // Wait a second
  interruptSetup();                 // sets up to read Pulse Sensor signal every 2mS 

void loop(){
//  sendDataSerial('S', Signal);      // send Processing the raw Pulse Sensor data
  if (QS == true){                    // Quantified Self flag is true when arduino finds a heartbeat
     fadeRate = 255;                  // Set 'fadeRate' Variable to 255 to fade LED with pulse
//     sendDataSerial('B',BPM);       // send heart rate with a 'B' prefix
//     sendDataSerial('Q',IBI);       // send time between beats with a 'Q' prefix
     QS = false;                      // reset the Quantified Self flag for next time    
  ledFadeToBeat();                    // Routine that fades color intensity to the beat
  delay(20);                          //  take a break

void ledFadeToBeat() {
    fadeRate -= 15;                         // Set LED fade value
    fadeRate = constrain(fadeRate,0,255);   // Keep LED fade value from going into negative numbers
    setStrip(fadeRate);                     // Write the value to the NeoPixels 
//    sendDataSerial('R',fadeRate);

void sendDataSerial(char symbol, int data ) {
//    Serial.print(symbol);                // symbol prefix tells Processing what type of data is coming
//    Serial.println(data);                // the data to send culminating in a carriage return

void setStrip(int r) {     // Set the strip to one color intensity (red)
   int g = 0;              // Green is set to zero (for non-red colors, change this)
   int b = 0;              // Blue is set to zero (for non-red colors, change this)
   for (int x=0; x < NUMPIXELS; x++) {
      strip.setPixelColor(x, strip.Color(r, g, b));


With both interrupt.ino and pulsesensor.ino in your code directory on your computer, open the Arduino programming environment.  Select Tools then your processor type (Like Pro Trinket 5V/16 MHz USB).  Plug your Pro Trinket in, press the Pro Trinket reset button then select upload to place the code on the Pro Trinket.  For detailed instructions on placing your code on the Pro Trinket via the Arduino IDE, see the Pro Trinket tutorial at

If you would like to debug the program or use the pulse sensor data on other processors, uncomment the lines outputting data to the Serial port.

This guide was first published on Sep 29, 2015. It was last updated on Sep 29, 2015.

This page (The Code) was last updated on Sep 23, 2015.

Text editor powered by tinymce.