Arduino Code

This code will get you started with any Arduino compatible (e.g. Arduino UNO, Adafruit Metro, ESP8266, Teensy, etc. As long as you have either a hardware serial or software serial port that can run at 9600 baud.

Wiring

Wiring is simple! Power the sensor with +5V and GND and then connect the data out pin (3.3V logic) to the serial input pin you'll use. Whether or not you are using hardware or software UART/serial may affect the pin, so adjust that as necessary. This wiring works for ATMega328P-based boards for sure, with Digital #2 as the data pin:

Upload this code to your board, and open up the serial console at 115200 baud

// On Leonardo/Micro or others with hardware serial, use those!
// uncomment this line:
// #define pmsSerial Serial1

// For UNO and others without hardware serial, we must use software serial...
// pin #2 is IN from sensor (TX pin on sensor), leave pin #3 disconnected
// comment these two lines if using hardware serial
#include <SoftwareSerial.h>
SoftwareSerial pmsSerial(2, 3);

void setup() {
  // our debugging output
  Serial.begin(115200);

  // sensor baud rate is 9600
  pmsSerial.begin(9600);
}

struct pms5003data {
  uint16_t framelen;
  uint16_t pm10_standard, pm25_standard, pm100_standard;
  uint16_t pm10_env, pm25_env, pm100_env;
  uint16_t particles_03um, particles_05um, particles_10um, particles_25um, particles_50um, particles_100um;
  uint16_t unused;
  uint16_t checksum;
};

struct pms5003data data;
    
void loop() {
  if (readPMSdata(&pmsSerial)) {
    // reading data was successful!
    Serial.println();
    Serial.println("---------------------------------------");
    Serial.println("Concentration Units (standard)");
    Serial.print("PM 1.0: "); Serial.print(data.pm10_standard);
    Serial.print("\t\tPM 2.5: "); Serial.print(data.pm25_standard);
    Serial.print("\t\tPM 10: "); Serial.println(data.pm100_standard);
    Serial.println("---------------------------------------");
    Serial.println("Concentration Units (environmental)");
    Serial.print("PM 1.0: "); Serial.print(data.pm10_env);
    Serial.print("\t\tPM 2.5: "); Serial.print(data.pm25_env);
    Serial.print("\t\tPM 10: "); Serial.println(data.pm100_env);
    Serial.println("---------------------------------------");
    Serial.print("Particles > 0.3um / 0.1L air:"); Serial.println(data.particles_03um);
    Serial.print("Particles > 0.5um / 0.1L air:"); Serial.println(data.particles_05um);
    Serial.print("Particles > 1.0um / 0.1L air:"); Serial.println(data.particles_10um);
    Serial.print("Particles > 2.5um / 0.1L air:"); Serial.println(data.particles_25um);
    Serial.print("Particles > 5.0um / 0.1L air:"); Serial.println(data.particles_50um);
    Serial.print("Particles > 10.0 um / 0.1L air:"); Serial.println(data.particles_100um);
    Serial.println("---------------------------------------");
  }
}

boolean readPMSdata(Stream *s) {
  if (! s->available()) {
    return false;
  }
  
  // Read a byte at a time until we get to the special '0x42' start-byte
  if (s->peek() != 0x42) {
    s->read();
    return false;
  }

  // Now read all 32 bytes
  if (s->available() < 32) {
    return false;
  }
    
  uint8_t buffer[32];    
  uint16_t sum = 0;
  s->readBytes(buffer, 32);

  // get checksum ready
  for (uint8_t i=0; i<30; i++) {
    sum += buffer[i];
  }

  /* debugging
  for (uint8_t i=2; i<32; i++) {
    Serial.print("0x"); Serial.print(buffer[i], HEX); Serial.print(", ");
  }
  Serial.println();
  */
  
  // The data comes in endian'd, this solves it so it works on all platforms
  uint16_t buffer_u16[15];
  for (uint8_t i=0; i<15; i++) {
    buffer_u16[i] = buffer[2 + i*2 + 1];
    buffer_u16[i] += (buffer[2 + i*2] << 8);
  }

  // put it into a nice struct :)
  memcpy((void *)&data, (void *)buffer_u16, 30);

  if (sum != data.checksum) {
    Serial.println("Checksum failure");
    return false;
  }
  // success!
  return true;
}

You'll see data printed out once a second, with all the measurements. For a clean-air indoor room you'll see something like this:

If you hold up a smoking soldering iron or something else that creates a lot of dust, you'll see much higher numbers!

Note that the numbers are very precise looking but we don't believe that they're going to be perfectly  accurate, calibration may be necessary!

This guide was first published on Dec 27, 2017. It was last updated on Dec 27, 2017. This page (Arduino Code) was last updated on Jul 17, 2019.