The code below includes the complete NeoPattern class, along with some 'test-drive' code in the form of an Arduino Sketch.  Copy and paste this code into the IDE and wire your pixels as shown in the wiring diagram.

#include <Adafruit_NeoPixel.h>

// Pattern types supported:
enum  pattern { NONE, RAINBOW_CYCLE, THEATER_CHASE, COLOR_WIPE, SCANNER, FADE };
// Patern directions supported:
enum  direction { FORWARD, REVERSE };

// NeoPattern Class - derived from the Adafruit_NeoPixel class
class NeoPatterns : public Adafruit_NeoPixel
{
    public:

    // Member Variables:  
    pattern  ActivePattern;  // which pattern is running
    direction Direction;     // direction to run the pattern
    
    unsigned long Interval;   // milliseconds between updates
    unsigned long lastUpdate; // last update of position
    
    uint32_t Color1, Color2;  // What colors are in use
    uint16_t TotalSteps;  // total number of steps in the pattern
    uint16_t Index;  // current step within the pattern
    
    void (*OnComplete)();  // Callback on completion of pattern
    
    // Constructor - calls base-class constructor to initialize strip
    NeoPatterns(uint16_t pixels, uint8_t pin, uint8_t type, void (*callback)())
    :Adafruit_NeoPixel(pixels, pin, type)
    {
        OnComplete = callback;
    }
    
    // Update the pattern
    void Update()
    {
        if((millis() - lastUpdate) > Interval) // time to update
        {
            lastUpdate = millis();
            switch(ActivePattern)
            {
                case RAINBOW_CYCLE:
                    RainbowCycleUpdate();
                    break;
                case THEATER_CHASE:
                    TheaterChaseUpdate();
                    break;
                case COLOR_WIPE:
                    ColorWipeUpdate();
                    break;
                case SCANNER:
                    ScannerUpdate();
                    break;
                case FADE:
                    FadeUpdate();
                    break;
                default:
                    break;
            }
        }
    }
  
    // Increment the Index and reset at the end
    void Increment()
    {
        if (Direction == FORWARD)
        {
           Index++;
           if (Index >= TotalSteps)
            {
                Index = 0;
                if (OnComplete != NULL)
                {
                    OnComplete(); // call the comlpetion callback
                }
            }
        }
        else // Direction == REVERSE
        {
            --Index;
            if (Index <= 0)
            {
                Index = TotalSteps-1;
                if (OnComplete != NULL)
                {
                    OnComplete(); // call the comlpetion callback
                }
            }
        }
    }
    
    // Reverse pattern direction
    void Reverse()
    {
        if (Direction == FORWARD)
        {
            Direction = REVERSE;
            Index = TotalSteps-1;
        }
        else
        {
            Direction = FORWARD;
            Index = 0;
        }
    }
    
    // Initialize for a RainbowCycle
    void RainbowCycle(uint8_t interval, direction dir = FORWARD)
    {
        ActivePattern = RAINBOW_CYCLE;
        Interval = interval;
        TotalSteps = 255;
        Index = 0;
        Direction = dir;
    }
    
    // Update the Rainbow Cycle Pattern
    void RainbowCycleUpdate()
    {
        for(int i=0; i< numPixels(); i++)
        {
            setPixelColor(i, Wheel(((i * 256 / numPixels()) + Index) & 255));
        }
        show();
        Increment();
    }

    // Initialize for a Theater Chase
    void TheaterChase(uint32_t color1, uint32_t color2, uint8_t interval, direction dir = FORWARD)
    {
        ActivePattern = THEATER_CHASE;
        Interval = interval;
        TotalSteps = numPixels();
        Color1 = color1;
        Color2 = color2;
        Index = 0;
        Direction = dir;
   }
    
    // Update the Theater Chase Pattern
    void TheaterChaseUpdate()
    {
        for(int i=0; i< numPixels(); i++)
        {
            if ((i + Index) % 3 == 0)
            {
                setPixelColor(i, Color1);
            }
            else
            {
                setPixelColor(i, Color2);
            }
        }
        show();
        Increment();
    }

    // Initialize for a ColorWipe
    void ColorWipe(uint32_t color, uint8_t interval, direction dir = FORWARD)
    {
        ActivePattern = COLOR_WIPE;
        Interval = interval;
        TotalSteps = numPixels();
        Color1 = color;
        Index = 0;
        Direction = dir;
    }
    
    // Update the Color Wipe Pattern
    void ColorWipeUpdate()
    {
        setPixelColor(Index, Color1);
        show();
        Increment();
    }
    
    // Initialize for a SCANNNER
    void Scanner(uint32_t color1, uint8_t interval)
    {
        ActivePattern = SCANNER;
        Interval = interval;
        TotalSteps = (numPixels() - 1) * 2;
        Color1 = color1;
        Index = 0;
    }

    // Update the Scanner Pattern
    void ScannerUpdate()
    { 
        for (int i = 0; i < numPixels(); i++)
        {
            if (i == Index)  // Scan Pixel to the right
            {
                 setPixelColor(i, Color1);
            }
            else if (i == TotalSteps - Index) // Scan Pixel to the left
            {
                 setPixelColor(i, Color1);
            }
            else // Fading tail
            {
                 setPixelColor(i, DimColor(getPixelColor(i)));
            }
        }
        show();
        Increment();
    }
    
    // Initialize for a Fade
    void Fade(uint32_t color1, uint32_t color2, uint16_t steps, uint8_t interval, direction dir = FORWARD)
    {
        ActivePattern = FADE;
        Interval = interval;
        TotalSteps = steps;
        Color1 = color1;
        Color2 = color2;
        Index = 0;
        Direction = dir;
    }
    
    // Update the Fade Pattern
    void FadeUpdate()
    {
        // Calculate linear interpolation between Color1 and Color2
        // Optimise order of operations to minimize truncation error
        uint8_t red = ((Red(Color1) * (TotalSteps - Index)) + (Red(Color2) * Index)) / TotalSteps;
        uint8_t green = ((Green(Color1) * (TotalSteps - Index)) + (Green(Color2) * Index)) / TotalSteps;
        uint8_t blue = ((Blue(Color1) * (TotalSteps - Index)) + (Blue(Color2) * Index)) / TotalSteps;
        
        ColorSet(Color(red, green, blue));
        show();
        Increment();
    }
   
    // Calculate 50% dimmed version of a color (used by ScannerUpdate)
    uint32_t DimColor(uint32_t color)
    {
        // Shift R, G and B components one bit to the right
        uint32_t dimColor = Color(Red(color) >> 1, Green(color) >> 1, Blue(color) >> 1);
        return dimColor;
    }

    // Set all pixels to a color (synchronously)
    void ColorSet(uint32_t color)
    {
        for (int i = 0; i < numPixels(); i++)
        {
            setPixelColor(i, color);
        }
        show();
    }

    // Returns the Red component of a 32-bit color
    uint8_t Red(uint32_t color)
    {
        return (color >> 16) & 0xFF;
    }

    // Returns the Green component of a 32-bit color
    uint8_t Green(uint32_t color)
    {
        return (color >> 8) & 0xFF;
    }

    // Returns the Blue component of a 32-bit color
    uint8_t Blue(uint32_t color)
    {
        return color & 0xFF;
    }
    
    // Input a value 0 to 255 to get a color value.
    // The colours are a transition r - g - b - back to r.
    uint32_t Wheel(byte WheelPos)
    {
        WheelPos = 255 - WheelPos;
        if(WheelPos < 85)
        {
            return Color(255 - WheelPos * 3, 0, WheelPos * 3);
        }
        else if(WheelPos < 170)
        {
            WheelPos -= 85;
            return Color(0, WheelPos * 3, 255 - WheelPos * 3);
        }
        else
        {
            WheelPos -= 170;
            return Color(WheelPos * 3, 255 - WheelPos * 3, 0);
        }
    }
};

void Ring1Complete();
void Ring2Complete();
void StickComplete();

// Define some NeoPatterns for the two rings and the stick
//  as well as some completion routines
NeoPatterns Ring1(24, 5, NEO_GRB + NEO_KHZ800, &Ring1Complete);
NeoPatterns Ring2(16, 6, NEO_GRB + NEO_KHZ800, &Ring2Complete);
NeoPatterns Stick(16, 7, NEO_GRB + NEO_KHZ800, &StickComplete);

// Initialize everything and prepare to start
void setup()
{
  Serial.begin(115200);

   pinMode(8, INPUT_PULLUP);
   pinMode(9, INPUT_PULLUP);
    
    // Initialize all the pixelStrips
    Ring1.begin();
    Ring2.begin();
    Stick.begin();
    
    // Kick off a pattern
    Ring1.TheaterChase(Ring1.Color(255,255,0), Ring1.Color(0,0,50), 100);
    Ring2.RainbowCycle(3);
    Ring2.Color1 = Ring1.Color1;
    Stick.Scanner(Ring1.Color(255,0,0), 55);
}

// Main loop
void loop()
{
    // Update the rings.
    Ring1.Update();
    Ring2.Update();    
    
    // Switch patterns on a button press:
    if (digitalRead(8) == LOW) // Button #1 pressed
    {
        // Switch Ring1 to FADE pattern
        Ring1.ActivePattern = FADE;
        Ring1.Interval = 20;
        // Speed up the rainbow on Ring2
        Ring2.Interval = 0;
        // Set stick to all red
        Stick.ColorSet(Stick.Color(255, 0, 0));
    }
    else if (digitalRead(9) == LOW) // Button #2 pressed
    {
        // Switch to alternating color wipes on Rings1 and 2
        Ring1.ActivePattern = COLOR_WIPE;
        Ring2.ActivePattern = COLOR_WIPE;
        Ring2.TotalSteps = Ring2.numPixels();
        // And update tbe stick
        Stick.Update();
    }
    else // Back to normal operation
    {
        // Restore all pattern parameters to normal values
        Ring1.ActivePattern = THEATER_CHASE;
        Ring1.Interval = 100;
        Ring2.ActivePattern = RAINBOW_CYCLE;
        Ring2.TotalSteps = 255;
        Ring2.Interval = min(10, Ring2.Interval);
        // And update tbe stick
        Stick.Update();
    }    
}

//------------------------------------------------------------
//Completion Routines - get called on completion of a pattern
//------------------------------------------------------------

// Ring1 Completion Callback
void Ring1Complete()
{
    if (digitalRead(9) == LOW)  // Button #2 pressed
    {
        // Alternate color-wipe patterns with Ring2
        Ring2.Interval = 40;
        Ring1.Color1 = Ring1.Wheel(random(255));
        Ring1.Interval = 20000;
    }
    else  // Retrn to normal
    {
      Ring1.Reverse();
    }
}

// Ring 2 Completion Callback
void Ring2Complete()
{
    if (digitalRead(9) == LOW)  // Button #2 pressed
    {
        // Alternate color-wipe patterns with Ring1
        Ring1.Interval = 20;
        Ring2.Color1 = Ring2.Wheel(random(255));
        Ring2.Interval = 20000;
    }
    else  // Retrn to normal
    {
        Ring2.RainbowCycle(random(0,10));
    }
}

// Stick Completion Callback
void StickComplete()
{
    // Random color change for next scan
    Stick.Color1 = Stick.Wheel(random(255));
}

This guide was first published on Mar 02, 2015. It was last updated on Mar 02, 2015.

This page (Put it all together...) was last updated on May 12, 2021.

Text editor powered by tinymce.