Did you feed the cat this morning? Would the cat tell you if you did? Of course not – food is an indoor pet's main source of entertainment. Using MagTag, we can create a clock that sets itself and allows you to save a reference to the last time you fed the cat – simultaneously maintaining your pet's healthy weight, and your sanity.

Bonus: it's compatible with dogs as well.

What You'll Need

MagTag dev board with enclosure pieces, four magnet feet, and lipoly battery
The Adafruit MagTag combines the new ESP32-S2 wireless module and a 2.9" grayscale E-Ink display to make a low-power IoT display that can show data on its screen...
Out of Stock
Angled shot of Adafruit MagTag development board with ESP32-S2 and E-Ink display.
The Adafruit MagTag combines the new ESP32-S2 wireless module and a 2.9" grayscale E-Ink display to make a low-power IoT display that can show data on its screen even when power...
Out of Stock
Angled shot of four magnet feet.
Got a glorious RGB Matrix project you want to mount and display in your workspace or home? If you have one of the matrix panels listed below, you'll need a pack of these...
$2.50
In Stock

Powering the MagTag

This project refreshes the MagTag's Eink display once a minute to display the current time, so we'll need a wall adapter for long-term power. Many common USB power adapters will do the trick – just make sure you have a cable that can connect to the MagTag's onboard USB-C port.

USB Type A to Type C Cable - approx 1 meter / 3 ft long
As technology changes and adapts, so does Adafruit. This  USB Type A to Type C cable will help you with the transition to USB C, even if you're still...
$4.95
In Stock
Angled shot of Micro B USB to USB C Adapter.
As technology changes and adapts, so does Adafruit, and speaking of adapting, this adapter has a Micro B USB jack and a USB C...
$1.25
In Stock
Wall wart power supply with 2 US prong power
Need a USB jack for charging or powering a project, but don't want to lug around a computer? This switching supply gives a clean regulated output at up to 1000mA! 110 or 240 input,...
$5.95
In Stock

CircuitPython is a derivative of MicroPython designed to simplify experimentation and education on low-cost microcontrollers. It makes it easier than ever to get prototyping by requiring no upfront desktop software downloads. Simply copy and edit files on the CIRCUITPY drive to iterate.

Set Up CircuitPython

Follow the steps to get CircuitPython installed on your MagTag.

Click the link above and download the latest .BIN and .UF2 file

(depending on how you program the ESP32S2 board you may need one or the other, might as well get both)

Download and save it to your desktop (or wherever is handy).

Plug your MagTag into your computer using a known-good USB cable.

A lot of people end up using charge-only USB cables and it is very frustrating! So make sure you have a USB cable you know is good for data sync.

Option 1 - Load with UF2 Bootloader

This is by far the easiest way to load CircuitPython. However it requires your board has the UF2 bootloader installed. Some early boards do not (we hadn't written UF2 yet!) - in which case you can load using the built in ROM bootloader.

Still, try this first!

Try Launching UF2 Bootloader

Loading CircuitPython by drag-n-drop UF2 bootloader is the easier way and we recommend it. If you have a MagTag where the front of the board is black, your MagTag came with UF2 already on it.

Launch UF2 by double-clicking the Reset button (the one next to the USB C port). You may have to try a few times to get the timing right.

If the UF2 bootloader is installed, you will see a new disk drive appear called MAGTAGBOOT

Copy the UF2 file you downloaded at the first step of this tutorial onto the MAGTAGBOOT drive

If you're using Windows and you get an error at the end of the file copy that says Error from the file copy, Error 0x800701B1: A device which does not exist was specified. You can ignore this error, the bootloader sometimes disconnects without telling Windows, the install completed just fine and you can continue. If its really annoying, you can also upgrade the bootloader (the latest version of the UF2 bootloader fixes this warning)

Your board should auto-reset into CircuitPython, or you may need to press reset. A CIRCUITPY drive will appear. You're done! Go to the next pages.

Option 2 - Use esptool to load BIN file

If you have an original MagTag with while soldermask on the front, we didn't have UF2 written for the ESP32S2 yet so it will not come with the UF2 bootloader.

You can upload with esptool to the ROM (hardware) bootloader instead!

Follow the initial steps found in the Run esptool and check connection section of the ROM Bootloader page to verify your environment is set up, your board is successfully connected, and which port it's using.

In the final command to write a binary file to the board, replace the port with your port, and replace "firmware.bin" with the the file you downloaded above.

The output should look something like the output in the image.

Press reset to exit the bootloader.

Your CIRCUITPY drive should appear!

You're all set! Go to the next pages.

Option 3 - Use Chrome Browser To Upload BIN file

If for some reason you cannot get esptool to run, you can always try using the Chrome-browser version of esptool we have written. This is handy if you don't have Python on your computer, or something is really weird with your setup that makes esptool not run (which happens sometimes and isn't worth debugging!) You can follow along on the Web Serial ESPTool page and either load the UF2 bootloader and then come back to Option 1 on this page, or you can download the CircuitPython BIN file directly using the tool in the same manner as the bootloader.

One of the great things about the ESP32 is the built-in WiFi capabilities. This page covers the basics of getting connected using CircuitPython.

The first thing you need to do is update your code.py to the following. Click the Download Project Bundle button below to download the necessary libraries and the code.py file in a zip file. Extract the contents of the zip file, and copy the entire lib folder and the code.py file to your CIRCUITPY drive.

# SPDX-FileCopyrightText: 2020 Brent Rubell for Adafruit Industries
#
# SPDX-License-Identifier: MIT

import os
import ipaddress
import ssl
import wifi
import socketpool
import adafruit_requests

# URLs to fetch from
TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"
JSON_QUOTES_URL = "https://www.adafruit.com/api/quotes.php"
JSON_STARS_URL = "https://api.github.com/repos/adafruit/circuitpython"

print("ESP32-S2 WebClient Test")

print(f"My MAC address: {[hex(i) for i in wifi.radio.mac_address]}")

print("Available WiFi networks:")
for network in wifi.radio.start_scanning_networks():
    print("\t%s\t\tRSSI: %d\tChannel: %d" % (str(network.ssid, "utf-8"),
                                             network.rssi, network.channel))
wifi.radio.stop_scanning_networks()

print(f"Connecting to {os.getenv('CIRCUITPY_WIFI_SSID')}")
wifi.radio.connect(os.getenv("CIRCUITPY_WIFI_SSID"), os.getenv("CIRCUITPY_WIFI_PASSWORD"))
print(f"Connected to {os.getenv('CIRCUITPY_WIFI_SSID')}")
print(f"My IP address: {wifi.radio.ipv4_address}")

ping_ip = ipaddress.IPv4Address("8.8.8.8")
ping = wifi.radio.ping(ip=ping_ip)

# retry once if timed out
if ping is None:
    ping = wifi.radio.ping(ip=ping_ip)

if ping is None:
    print("Couldn't ping 'google.com' successfully")
else:
    # convert s to ms
    print(f"Pinging 'google.com' took: {ping * 1000} ms")

pool = socketpool.SocketPool(wifi.radio)
requests = adafruit_requests.Session(pool, ssl.create_default_context())

print(f"Fetching text from {TEXT_URL}")
response = requests.get(TEXT_URL)
print("-" * 40)
print(response.text)
print("-" * 40)

print(f"Fetching json from {JSON_QUOTES_URL}")
response = requests.get(JSON_QUOTES_URL)
print("-" * 40)
print(response.json())
print("-" * 40)

print()

print(f"Fetching and parsing json from {JSON_STARS_URL}")
response = requests.get(JSON_STARS_URL)
print("-" * 40)
print(f"CircuitPython GitHub Stars: {response.json()['stargazers_count']}")
print("-" * 40)

print("Done")

Your CIRCUITPY drive should resemble the following.

CIRCUITPY

To get connected, the next thing you need to do is update the settings.toml file.

The settings.toml File

We expect people to share tons of projects as they build CircuitPython WiFi widgets. What we want to avoid is people accidentally sharing their passwords or secret tokens and API keys. So, we designed all our examples to use a settings.toml file, that is on your CIRCUITPY drive, to hold secret/private/custom data. That way you can share your main project without worrying about accidentally sharing private stuff.

If you have a fresh install of CircuitPython on your board, the initial settings.toml file on your CIRCUITPY drive is empty.

To get started, you can update the settings.toml on your CIRCUITPY drive to contain the following code.

# SPDX-FileCopyrightText: 2023 Adafruit Industries
#
# SPDX-License-Identifier: MIT

# This is where you store the credentials necessary for your code.
# The associated demo only requires WiFi, but you can include any
# credentials here, such as Adafruit IO username and key, etc.
CIRCUITPY_WIFI_SSID = "your-wifi-ssid"
CIRCUITPY_WIFI_PASSWORD = "your-wifi-password"

This file should contain a series of Python variables, each assigned to a string. Each variable should describe what it represents (say wifi_ssid), followed by an (equals sign), followed by the data in the form of a Python string (such as "my-wifi-password" including the quote marks).

At a minimum you'll need to add/update your WiFi SSID and WiFi password, so do that now!

As you make projects you may need more tokens and keys, just add them one line at a time. See for example other tokens such as one for accessing GitHub or the Hackaday API. Other non-secret data like your timezone can also go here.

For the correct time zone string, look at http://worldtimeapi.org/timezones and remember that if your city is not listed, look for a city in the same time zone, for example Boston, New York, Philadelphia, Washington DC, and Miami are all on the same time as New York.

Of course, don't share your settings.toml - keep that out of GitHub, Discord or other project-sharing sites.

Don't share your settings.toml file! It has your passwords and API keys in it!

If you connect to the serial console, you should see something like the following:

In order, the example code...

Checks the ESP32's MAC address.

print(f"My MAC address: {[hex(i) for i in wifi.radio.mac_address]}")

Performs a scan of all access points and prints out the access point's name (SSID), signal strength (RSSI), and channel.

print("Available WiFi networks:")
for network in wifi.radio.start_scanning_networks():
    print("\t%s\t\tRSSI: %d\tChannel: %d" % (str(network.ssid, "utf-8"),
                                             network.rssi, network.channel))
wifi.radio.stop_scanning_networks()

Connects to the access point you defined in the settings.toml file, and prints out its local IP address.

print(f"Connecting to {os.getenv('WIFI_SSID')}")
wifi.radio.connect(os.getenv("WIFI_SSID"), os.getenv("WIFI_PASSWORD"))
print(f"Connected to {os.getenv('WIFI_SSID')}")
print(f"My IP address: {wifi.radio.ipv4_address}")

Attempts to ping a Google DNS server to test connectivity. If a ping fails, it returns None. Initial pings can sometimes fail for various reasons. So, if the initial ping is successful (is not None), it will print the echo speed in ms. If the initial ping fails, it will try one more time to ping, and then print the returned value. If the second ping fails, it will result in "Ping google.com: None ms" being printed to the serial console. Failure to ping does not always indicate a lack of connectivity, so the code will continue to run.

ping_ip = ipaddress.IPv4Address("8.8.8.8")
ping = wifi.radio.ping(ip=ping_ip) * 1000
if ping is not None:
    print(f"Ping google.com: {ping} ms")
else:
    ping = wifi.radio.ping(ip=ping_ip)
    print(f"Ping google.com: {ping} ms")

The code creates a socketpool using the wifi radio's available sockets. This is performed so we don't need to re-use sockets. Then, it initializes a a new instance of the requests interface - which makes getting data from the internet really really easy.

pool = socketpool.SocketPool(wifi.radio)
requests = adafruit_requests.Session(pool, ssl.create_default_context())

To read in plain-text from a web URL, call requests.get - you may pass in either a http, or a https url for SSL connectivity. 

print(f"Fetching text from {TEXT_URL}")
response = requests.get(TEXT_URL)
print("-" * 40)
print(response.text)
print("-" * 40)

Requests can also display a JSON-formatted response from a web URL using a call to requests.get

print(f"Fetching json from {JSON_QUOTES_URL}")
response = requests.get(JSON_QUOTES_URL)
print("-" * 40)
print(response.json())
print("-" * 40)

Finally, you can fetch and parse a JSON URL using requests.get. This code snippet obtains the stargazers_count field from a call to the GitHub API.

print(f"Fetching and parsing json from {JSON_STARS_URL}")
response = requests.get(JSON_STARS_URL)
print("-" * 40)
print(f"CircuitPython GitHub Stars: {response.json()['stargazers_count']}")
print("-" * 40)

OK you now have your ESP32 board set up with a proper settings.toml file and can connect over the Internet. If not, check that your settings.toml file has the right SSID and password and retrace your steps until you get the Internet connectivity working!

A very common need for projects is to know the current date and time. Especially when you want to deep sleep until an event, or you want to change your display based on what day, time, date, etc. it is

Determining the correct local time is really really hard. There are various time zones, Daylight Savings dates, leap seconds, etc. Trying to get NTP time and then back-calculating what the local time is, is extraordinarily hard on a microcontroller just isn't worth the effort and it will get out of sync as laws change anyways.

For that reason, we have the free adafruit.io time service. Free for anyone with a free adafruit.io account. You do need an account because we have to keep accidentally mis-programmed-board from overwhelming adafruit.io and lock them out temporarily. Again, it's free!

There are other services like WorldTimeAPI, but we don't use those for our guides because they are nice people and we don't want to accidentally overload their site. Also, there's a chance it may eventually go down or also require an account.

Step 1) Make an Adafruit account

It's free! Visit https://accounts.adafruit.com/ to register and make an account if you do not already have one

Step 2) Sign into Adafruit IO

Head over to io.adafruit.com and click Sign In to log into IO using your Adafruit account. It's free and fast to join.

Step 3) Get your Adafruit IO Key

Click on My Key in the top bar

adafruit_products_image.png
"My Key" has been replaced with a key-shaped icon!

You will get a popup with your Username and Key (In this screenshot, we've covered it with red blocks)

Go to your secrets.py file on your CIRCUITPY drive and add three lines for aio_username, aio_key and timezone so you get something like the following:

# This file is where you keep secret settings, passwords, and tokens!
# If you put them in the code you risk committing that info or sharing it

secrets = {
    'ssid' : 'home_wifi_network',
    'password' : 'wifi_password',
    'aio_username' : 'my_adafruit_io_username',
    'aio_key' : 'my_adafruit_io_key',
    'timezone' : "America/New_York", # http://worldtimeapi.org/timezones
    }

The timezone is optional, if you don't have that entry, adafruit.io will guess your timezone based on geographic IP address lookup. You can visit http://worldtimeapi.org/timezones to see all the time zones available (even though we do not use Worldtime for time-keeping, we do use the same time zone table).

Step 4) Upload Test Python Code

This code is like the Internet Test code from before, but this time it will connect to adafruit.io and get the local time

import ipaddress
import ssl
import wifi
import socketpool
import adafruit_requests
import secrets

# Get wifi details and more from a secrets.py file
try:
    from secrets import secrets
except ImportError:
    print("WiFi secrets are kept in secrets.py, please add them there!")
    raise

# Get our username, key and desired timezone
aio_username = secrets["aio_username"]
aio_key = secrets["aio_key"]
location = secrets.get("timezone", None)
TIME_URL = "https://io.adafruit.com/api/v2/%s/integrations/time/strftime?x-aio-key=%s&tz=%s" % (aio_username, aio_key, location)
TIME_URL += "&fmt=%25Y-%25m-%25d+%25H%3A%25M%3A%25S.%25L+%25j+%25u+%25z+%25Z"

print("ESP32-S2 Adafruit IO Time test")

print("My MAC addr:", [hex(i) for i in wifi.radio.mac_address])

print("Available WiFi networks:")
for network in wifi.radio.start_scanning_networks():
    print("\t%s\t\tRSSI: %d\tChannel: %d" % (str(network.ssid, "utf-8"),
            network.rssi, network.channel))
wifi.radio.stop_scanning_networks()

print("Connecting to %s"%secrets["ssid"])
wifi.radio.connect(secrets["ssid"], secrets["password"])
print("Connected to %s!"%secrets["ssid"])
print("My IP address is", wifi.radio.ipv4_address)

ipv4 = ipaddress.ip_address("8.8.4.4")
print("Ping google.com: %f ms" % wifi.radio.ping(ipv4))

pool = socketpool.SocketPool(wifi.radio)
requests = adafruit_requests.Session(pool, ssl.create_default_context())

print("Fetching text from", TIME_URL)
response = requests.get(TIME_URL)
print("-" * 40)
print(response.text)
print("-" * 40)

After running this, you will see something like the below text. We have blocked out the part with the secret username and key data!

Note at the end you will get the date, time, and your timezone! If so, you have correctly configured your secrets.py and can continue to the next steps!

secrets.py

First, make sure you've set up your secrets.py file has your accurate network info stored.

Text Editor

Adafruit recommends using the Mu editor for editing your CircuitPython code. You can get more info in this guide.

Alternatively, you can use any text editor that saves simple text files.

Installing Project Code

To use with CircuitPython, you need to first install a few libraries, into the lib folder on your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download Project Bundle button below to download the necessary libraries and the code.py file in a zip file. Extract the contents of the zip file, open the directory Magtag_Cat_Fed_Clock/ and then click on the directory that matches the version of CircuitPython you're using and copy the contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

If you're having difficulty running this example, it could be because your MagTag CircuitPython firmware or library needs to be upgraded! Please be sure to follow https://learn.adafruit.com/adafruit-magtag/circuitpython to install the latest CircuitPython firmware and then also replace/update ALL the MagTag-specific libraries mentioned here https://learn.adafruit.com/adafruit-magtag/circuitpython-libraries-2
# SPDX-FileCopyrightText: 2020 Collin Cunningham for Adafruit Industries
#
# SPDX-License-Identifier: MIT

import time
from adafruit_magtag.magtag import MagTag

USE_AMPM_TIME = True
weekdays = ("mon", "tue", "wed", "thur", "fri", "sat", "sun")
last_sync = None
last_minute = None

magtag = MagTag()

magtag.graphics.set_background("/background.bmp")

mid_x = magtag.graphics.display.width // 2 - 1
magtag.add_text(
    text_font="Lato-Regular-74.bdf",
    text_position=(mid_x,10),
    text_anchor_point=(0.5,0),
    is_data=False,
)
magtag.set_text("00:00a", auto_refresh = False)

magtag.add_text(
    text_font="/BebasNeueRegular-41.bdf",
    text_position=(126,86), #was 141
    text_anchor_point=(0,0),
    is_data=False,
)
magtag.set_text("DAY 00:00a", index = 1, auto_refresh = False)

def hh_mm(time_struct, twelve_hour=True):
    """ Given a time.struct_time, return a string as H:MM or HH:MM, either
        12- or 24-hour style depending on twelve_hour flag.
    """
    postfix = ""
    if twelve_hour:
        if time_struct.tm_hour > 12:
            hour_string = str(time_struct.tm_hour - 12) # 13-23 -> 1-11 (pm)
            postfix = "p"
        elif time_struct.tm_hour > 0:
            hour_string = str(time_struct.tm_hour) # 1-12
            postfix = "a"
            if time_struct.tm_hour == 12:
                postfix = "p" # 12 -> 12 (pm)
        else:
            hour_string = '12' # 0 -> 12 (am)
            postfix = "a"
    else:
        hour_string = '{hh:02d}'.format(hh=time_struct.tm_hour)
    return hour_string + ':{mm:02d}'.format(mm=time_struct.tm_min) + postfix

while True:
    if not last_sync or (time.monotonic() - last_sync) > 3600:
        # at start or once an hour
        magtag.network.get_local_time()
        last_sync = time.monotonic()

    # get current time
    now = time.localtime()

    # minute updated, refresh display!
    if not last_minute or (last_minute != now.tm_min):  # minute has updated
        magtag.set_text(hh_mm(now, USE_AMPM_TIME), index = 0)
        last_minute = now.tm_min

    # timestamp
    if magtag.peripherals.button_a_pressed:
        out = weekdays[now.tm_wday] + " " + hh_mm(now, USE_AMPM_TIME)
        magtag.set_text(out, index = 1)
        while magtag.peripherals.button_a_pressed: # wait till released
            pass

Usage

After copying the code to the MagTag, the board will restart. After a moment the board's display will refresh to show the current time.

To save a reference to the current time of cat feeding, press and release the left-most pushbutton (under the fork & knife icon).

How It Works

import time
from adafruit_magtag.magtag import MagTag

First off, we import code libraries to handle time formatting/calculation and the MagTag library for access to all the board's special features.

USE_AMPM_TIME = True
weekdays = ("mon", "tue", "wed", "thur", "fri", "sat", "sun")
last_sync = None
last_minute = None

magtag = MagTag()

Next, we define some variables. USE_AMPM_TIME determines if time will be displayed in 12 hour or 24 hour (aka military time) format. The weekdays variable stores names for days of the week.

The last_sync variable is defined to keep track of when the time was last synced with the adafruit.io server, and the last_minute variable keeps a reference to the last time the display was updated at a new minute.

Finally the magtag object is created for addressing the board.

magtag.graphics.set_background("/background.bmp")

mid_x = magtag.graphics.display.width // 2 - 1
magtag.add_text(
    text_font="Lato-Regular-74.bdf",
    text_position=(mid_x,10),
    text_anchor_point=(0.5,0),
    is_data=False,
)
magtag.set_text("00:00a", auto_refresh = False)

magtag.add_text(
    text_font="/BebasNeueRegular-41.bdf",
    text_position=(126,86), #was 141
    text_anchor_point=(0,0),
    is_data=False,
)
magtag.set_text("DAY 00:00a", index = 1, auto_refresh = False)

The graphics layout is composed of three parts:

  • set_background sets the bitmap image (with cat & fork/knife icons) as the base image on the display.
  • add_text is called to create the large main time display, then called again to create the smaller reference clock below.
def hh_mm(time_struct, twelve_hour=True):
    """ Given a time.struct_time, return a string as H:MM or HH:MM, either
        12- or 24-hour style depending on twelve_hour flag.
    """
    postfix = ""
    if twelve_hour:
        if time_struct.tm_hour > 12:
            hour_string = str(time_struct.tm_hour - 12) # 13-23 -> 1-11 (pm)
            postfix = "p"
        elif time_struct.tm_hour > 0:
            hour_string = str(time_struct.tm_hour) # 1-12
            postfix = "a"
        else:
            hour_string = '12' # 0 -> 12 (am)
            postfix = "a"
    else:
        hour_string = '{hh:02d}'.format(hh=time_struct.tm_hour)
    return hour_string + ':{mm:02d}'.format(mm=time_struct.tm_min) + postfix

Next, the hh_mm function is defined. This function takes a time_struct value and converts it into a time string formatted for display.

while(True):
    if not last_sync or (time.monotonic() - last_sync) > 3600:
        # at start or once an hour
        magtag.network.get_local_time()
        last_sync = time.monotonic()

In the main loop, we first check to see if it's time to sync local time w the adafruit.io server. This is done the first time the code is run, and once every hour after.

# get current time
    now = time.localtime()

    # minute updated, refresh display!
    if not last_minute or (last_minute != now.tm_min):  # minute has updated
        magtag.set_text(hh_mm(now, USE_AMPM_TIME), index = 0)
        last_minute = now.tm_min

Next we get the the local time as a time_struct and store it in the now variable.

If the minute value of now has changed, the main time display is updated, and a reference is saved in last_minute for comparison next time through the loop.

# timestamp
    if magtag.peripherals.button_a_pressed:
        out = weekdays[now.tm_wday] + " " + hh_mm(now, USE_AMPM_TIME)
        magtag.set_text(out, index = 1)
        while magtag.peripherals.button_a_pressed: # wait till released
            pass

Finally, the code checks to see if the A button is pressed. If it is, the smaller time display is updated using the hh_mm function, prefixed by the current weekday. If the button is held continuously, the code waits for it to be released.

This guide was first published on Dec 15, 2020. It was last updated on Mar 29, 2024.