For a remote in this example we'll be using an Apple clicker remote. You can use any kind of remote you wish, or you can steal one of these from an unsuspecting hipster.
void printpulses(void) { Serial.println("\n\r\n\rReceived: \n\rOFF \tON"); for (uint8_t i = 0; i < currentpulse; i++) { Serial.print(pulses[i][0] * RESOLUTION, DEC); Serial.print(" usec, "); Serial.print(pulses[i][1] * RESOLUTION, DEC); Serial.println(" usec"); } // print it in a 'array' format Serial.println("int IRsignal[] = {"); Serial.println("// ON, OFF (in 10's of microseconds)"); for (uint8_t i = 0; i < currentpulse-1; i++) { Serial.print("\t"); // tab Serial.print(pulses[i][1] * RESOLUTION / 10, DEC); Serial.print(", "); Serial.print(pulses[i+1][0] * RESOLUTION / 10, DEC); Serial.println(","); } Serial.print("\t"); // tab Serial.print(pulses[currentpulse-1][1] * RESOLUTION / 10, DEC); Serial.print(", 0};"); }
int IRsignal[] = { // ON, OFF (in 10's of microseconds) 912, 438, 68, 48, 68, 158, 68, 158, 68, 158, 68, 48, 68, 158, 68, 158, 68, 158, 70, 156, 70, 158, 68, 158, 68, 48, 68, 46, 70, 46, 68, 46, 68, 160, 68, 158, 70, 46, 68, 158, 68, 46, 70, 46, 68, 48, 68, 46, 68, 48, 66, 48, 68, 48, 66, 160, 66, 50, 66, 160, 66, 52, 64, 160, 66, 48, 66, 3950, 908, 214, 66, 3012, 908, 212, 68, 0};
We'll try to detect that code.
Let's start a new sketch called IR Commander (you can download the final code from GitHub at the green button below or click Download Project Zip in the complete code listing).
// SPDX-FileCopyrightText: 2019 Limor Fried for Adafruit Industries // // SPDX-License-Identifier: MIT /* Raw IR commander This sketch/program uses the Arduno and a PNA4602 to decode IR received. It then attempts to match it to a previously recorded IR signal. Limor Fried, Adafruit Industries MIT License, please attribute check out learn.adafruit.com for more tutorials! */ // We need to use the 'raw' pin reading methods // because timing is very important here and the digitalRead() // procedure is slower! //uint8_t IRpin = 2; // Digital pin #2 is the same as Pin D2 see // http://arduino.cc/en/Hacking/PinMapping168 for the 'raw' pin mapping #define IRpin_PIN PIND #define IRpin 2 // the maximum pulse we'll listen for - 65 milliseconds is a long time #define MAXPULSE 65000 #define NUMPULSES 50 // what our timing resolution should be, larger is better // as its more 'precise' - but too large and you wont get // accurate timing #define RESOLUTION 20 // What percent we will allow in variation to match the same code #define FUZZINESS 20 // we will store up to 100 pulse pairs (this is -a lot-) uint16_t pulses[NUMPULSES][2]; // pair is high and low pulse uint8_t currentpulse = 0; // index for pulses we're storing #include "ircommander.h" void setup(void) { Serial.begin(9600); Serial.println("Ready to decode IR!"); } void loop(void) { int numberpulses; numberpulses = listenForIR(); Serial.print("Heard "); Serial.print(numberpulses); Serial.println("-pulse long IR signal"); if (IRcompare(numberpulses, ApplePlaySignal,sizeof(ApplePlaySignal)/4)) { Serial.println("PLAY"); } if (IRcompare(numberpulses, AppleRewindSignal,sizeof(AppleRewindSignal)/4)) { Serial.println("REWIND"); } if (IRcompare(numberpulses, AppleForwardSignal,sizeof(AppleForwardSignal)/4)) { Serial.println("FORWARD"); } delay(500); } //KGO: added size of compare sample. Only compare the minimum of the two boolean IRcompare(int numpulses, int Signal[], int refsize) { int count = min(numpulses,refsize); Serial.print("count set to: "); Serial.println(count); for (int i=0; i< count-1; i++) { int oncode = pulses[i][1] * RESOLUTION / 10; int offcode = pulses[i+1][0] * RESOLUTION / 10; #ifdef DEBUG Serial.print(oncode); // the ON signal we heard Serial.print(" - "); Serial.print(Signal[i*2 + 0]); // the ON signal we want #endif // check to make sure the error is less than FUZZINESS percent if ( abs(oncode - Signal[i*2 + 0]) <= (Signal[i*2 + 0] * FUZZINESS / 100)) { #ifdef DEBUG Serial.print(" (ok)"); #endif } else { #ifdef DEBUG Serial.print(" (x)"); #endif // we didn't match perfectly, return a false match return false; } #ifdef DEBUG Serial.print(" \t"); // tab Serial.print(offcode); // the OFF signal we heard Serial.print(" - "); Serial.print(Signal[i*2 + 1]); // the OFF signal we want #endif if ( abs(offcode - Signal[i*2 + 1]) <= (Signal[i*2 + 1] * FUZZINESS / 100)) { #ifdef DEBUG Serial.print(" (ok)"); #endif } else { #ifdef DEBUG Serial.print(" (x)"); #endif // we didn't match perfectly, return a false match return false; } #ifdef DEBUG Serial.println(); #endif } // Everything matched! return true; } int listenForIR(void) { currentpulse = 0; while (1) { uint16_t highpulse, lowpulse; // temporary storage timing highpulse = lowpulse = 0; // start out with no pulse length // while (digitalRead(IRpin)) { // this is too slow! while (IRpin_PIN & (1 << IRpin)) { // pin is still HIGH // count off another few microseconds highpulse++; delayMicroseconds(RESOLUTION); // If the pulse is too long, we 'timed out' - either nothing // was received or the code is finished, so print what // we've grabbed so far, and then reset // KGO: Added check for end of receive buffer if (((highpulse >= MAXPULSE) && (currentpulse != 0))|| currentpulse == NUMPULSES) { return currentpulse; } } // we didn't time out so lets stash the reading pulses[currentpulse][0] = highpulse; // same as above while (! (IRpin_PIN & _BV(IRpin))) { // pin is still LOW lowpulse++; delayMicroseconds(RESOLUTION); // KGO: Added check for end of receive buffer if (((lowpulse >= MAXPULSE) && (currentpulse != 0))|| currentpulse == NUMPULSES) { return currentpulse; } } pulses[currentpulse][1] = lowpulse; // we read one high-low pulse successfully, continue! currentpulse++; } } void printpulses(void) { Serial.println("\n\r\n\rReceived: \n\rOFF \tON"); for (uint8_t i = 0; i < currentpulse; i++) { Serial.print(pulses[i][0] * RESOLUTION, DEC); Serial.print(" usec, "); Serial.print(pulses[i][1] * RESOLUTION, DEC); Serial.println(" usec"); } // print it in a 'array' format Serial.println("int IRsignal[] = {"); Serial.println("// ON, OFF (in 10's of microseconds)"); for (uint8_t i = 0; i < currentpulse-1; i++) { Serial.print("\t"); // tab Serial.print(pulses[i][1] * RESOLUTION / 10, DEC); Serial.print(", "); Serial.print(pulses[i+1][0] * RESOLUTION / 10, DEC); Serial.println(","); } Serial.print("\t"); // tab Serial.print(pulses[currentpulse-1][1] * RESOLUTION / 10, DEC); Serial.print(", 0};"); }
// SPDX-FileCopyrightText: 2019 Limor Fried for Adafruit Industries // // SPDX-License-Identifier: MIT /******************* our codes ************/ int ApplePlaySignal[] = { // ON, OFF (in 10's of microseconds) 912, 438, 68, 48, 68, 158, 68, 158, 68, 158, 68, 48, 68, 158, 68, 158, 68, 158, 70, 156, 70, 158, 68, 158, 68, 48, 68, 46, 70, 46, 68, 46, 68, 160, 68, 158, 70, 46, 68, 158, 68, 46, 70, 46, 68, 48, 68, 46, 68, 48, 66, 48, 68, 48, 66, 160, 66, 50, 66, 160, 66, 50, 64, 160, 66, 50, 66, 3950, 908, 214, 66, 3012, 908, 212, 68, 0}; int AppleForwardSignal[] = { // ON, OFF (in 10's of microseconds) 908, 444, 64, 50, 66, 162, 64, 162, 64, 162, 64, 52, 64, 162, 64, 162, 64, 162, 64, 164, 62, 164, 64, 162, 64, 52, 62, 52, 64, 52, 64, 50, 64, 164, 64, 50, 64, 164, 64, 162, 64, 50, 66, 50, 66, 50, 64, 50, 66, 50, 64, 52, 64, 50, 66, 160, 66, 50, 64, 162, 66, 50, 64, 162, 64, 50, 66, 3938, 906, 214, 66, 3014, 906, 214, 64, 0}; int AppleRewindSignal[] = { // ON, OFF (in 10's of microseconds) 908, 442, 66, 48, 66, 162, 66, 160, 66, 160, 66, 50, 66, 160, 66, 160, 66, 160, 68, 158, 68, 160, 66, 160, 66, 50, 66, 48, 66, 50, 66, 48, 66, 162, 66, 160, 66, 48, 68, 48, 66, 160, 66, 50, 66, 50, 66, 48, 66, 50, 66, 48, 68, 48, 66, 160, 66, 50, 66, 160, 66, 50, 66, 160, 66, 48, 68, 3936, 906, 214, 66, 0};
This code uses parts of our previous sketch. The first part we'll do is to create a function that just listens for an IR code an puts the pulse timings into the pulses[] array. It will return the number of pulses it heard as a return-value.
int listenForIR(void) { currentpulse = 0; while (1) { uint16_t highpulse, lowpulse; // temporary storage timing highpulse = lowpulse = 0; // start out with no pulse length // while (digitalRead(IRpin)) { // this is too slow! while (IRpin_PIN & (1 << IRpin)) { // pin is still HIGH // count off another few microseconds highpulse++; delayMicroseconds(RESOLUTION); // If the pulse is too long, we 'timed out' - either nothing // was received or the code is finished, so print what // we've grabbed so far, and then reset if ((highpulse >= MAXPULSE) && (currentpulse != 0)) { return currentpulse; } } // we didn't time out so lets stash the reading pulses[currentpulse][0] = highpulse; // same as above while (! (IRpin_PIN & _BV(IRpin))) { // pin is still LOW lowpulse++; delayMicroseconds(RESOLUTION); if ((lowpulse >= MAXPULSE) && (currentpulse != 0)) { return currentpulse; } } pulses[currentpulse][1] = lowpulse; // we read one high-low pulse successfully, continue! currentpulse++; } }
void loop(void) { int numberpulses; numberpulses = listenForIR(); Serial.print("Heard "); Serial.print(numberpulses); Serial.println("-pulse long IR signal"); }
// What percent we will allow in variation to match the same code \\ #define FUZZINESS 20 void loop(void) { int numberpulses; numberpulses = listenForIR(); Serial.print("Heard "); Serial.print(numberpulses); Serial.println("-pulse long IR signal"); for (int i=0; i< numberpulses-1; i++) { int oncode = pulses[i][1] * RESOLUTION / 10; int offcode = pulses[i+1][0] * RESOLUTION / 10; Serial.print(oncode); // the ON signal we heard Serial.print(" - "); Serial.print(ApplePlaySignal[i*2 + 0]); // the ON signal we want // check to make sure the error is less than FUZZINESS percent if ( abs(oncode - ApplePlaySignal[i*2 + 0]) <= (oncode * FUZZINESS / 100)) { Serial.print(" (ok)"); } else { Serial.print(" (x)"); } Serial.print(" \t"); // tab Serial.print(offcode); // the OFF signal we heard Serial.print(" - "); Serial.print(ApplePlaySignal[i*2 + 1]); // the OFF signal we want if ( abs(offcode - ApplePlaySignal[i*2 + 1]) <= (offcode * FUZZINESS / 100)) { Serial.print(" (ok)"); } else { Serial.print(" (x)"); } Serial.println(); } }
This loop, as it goes through each pulse, does a little math. It compares the absolute (abs()) difference between the code we heard and the code we're trying to match abs(oncode - ApplePlaySignal[i*2 + 0]) and then makes sure that the error is less than FUZZINESS percent of the code length (oncode * FUZZINESS / 100)
We found we had to tweak the stored values a little to make them match up 100% each time. IR is not a precision-timed protocol so having to make the FUZZINESS 20% or more is not a bad thing
Finally, we can turn the loop() into its own function which will return true or false depending on whether it matched the code we ask it to. We also commented out the printing functions
boolean IRcompare(int numpulses, int Signal[]) { for (int i=0; i< numpulses-1; i++) { int oncode = pulses[i][1] * RESOLUTION / 10; int offcode = pulses[i+1][0] * RESOLUTION / 10; /* Serial.print(oncode); // the ON signal we heard Serial.print(" - "); Serial.print(Signal[i*2 + 0]); // the ON signal we want */ // check to make sure the error is less than FUZZINESS percent if ( abs(oncode - Signal[i*2 + 0]) <= (Signal[i*2 + 0] * FUZZINESS / 100)) { //Serial.print(" (ok)"); } else { //Serial.print(" (x)"); // we didn't match perfectly, return a false match return false; } /* Serial.print(" \t"); // tab Serial.print(offcode); // the OFF signal we heard Serial.print(" - "); Serial.print(Signal[i*2 + 1]); // the OFF signal we want */ if ( abs(offcode - Signal[i*2 + 1]) <= (Signal[i*2 + 1] * FUZZINESS / 100)) { //Serial.print(" (ok)"); } else { //Serial.print(" (x)"); // we didn't match perfectly, return a false match return false; } //Serial.println(); } // Everything matched! return true; }
We then took more IR command data for the 'rewind' and 'fastforward' buttons and put all the code array data into ircodes.h to keep the main sketch from being too long and unreadable (you can get all the code from github)
Finally, the main loop looks like this:
void loop(void) { int numberpulses; numberpulses = listenForIR(); Serial.print("Heard "); Serial.print(numberpulses); Serial.println("-pulse long IR signal"); if (IRcompare(numberpulses, ApplePlaySignal)) { Serial.println("PLAY"); } if (IRcompare(numberpulses, AppleRewindSignal)) { Serial.println("REWIND"); } if (IRcompare(numberpulses, AppleForwardSignal)) { Serial.println("FORWARD"); } }
We check against all the codes we know about and print out whenever we get a match. You could now take this code and turn it into something else, like a robot that moves depending on what button is pressed.
After testing, success!
Text editor powered by tinymce.