

Introducing Bluefruit EZ-Key
Created by lady ada

https://learn.adafruit.com/introducing-bluefruit-ez-key-diy-bluetooth-hid-keyboard

Last updated on 2023-08-29 02:23:44 PM EDT

©Adafruit Industries Page 1 of 45

3

4

6

7

10

14

20

23

35

39

43

43

Table of Contents

Overview

Pinouts

• Top Row

• Grounds and Vin

• Control and LEDs

• Bottom Row

• Left Port (6-pins)

Pairing to Bluefruit

Windows

• Step 0. Install USB adapter

• Step 1. Power the Bluefruit EZ-Key and Press the Pair Button

• Step 2 Pair using Windows Bluetooth services

Mac

• Step 1. Power the Bluefruit EZ-Key and Press the Pair Button

• Step 2. Pair Using MacOS Bluetooth Service

Linux (e.g. Raspberry Pi)

• Step 0 Plug in BT Adapter

• Step 1 Update & Install Bluez

• Step 2. Power the Bluefruit EZ-Key and Press the Pair Button

• Step 3. Scan & Connect to Bluefruit Module

User Manual

• Dimensions in Inches & mm

Sending Keys/Mouse Via Serial

• Printable character keymap

• Non-printable Characters

• Raw HID Keyboard Reports

• Raw HID Mouse Reports

• Raw HID Consumer Reports

• Testing Sketch (Arduino)

Remapping the Buttons (Serial)

• Load Processing Sketch

• Customizing Keys

Remapping the Buttons (Wireless)

• "Text style" over-the-air remapper

FAQ

Downloads

• Files

• Schematic

• Fabrication Print

©Adafruit Industries Page 2 of 45

Overview

Create your own wireless Bluetooth keyboard controller in an hour with the Bluefruit

EZ-Key: it's the fastest, easiest and bestest Bluetooth controller. We spent years

learning how to develop our own custom Bluetooth firmware, and coupled with our

own BT module hardware, we've created the most Maker-friendly wireless you can

get!

This breakout acts just like a BT keyboard, and works great with any BT-capable

device: Mac, Windows, Linux, iOS, and Android. Power the module with 3-16VDC, and

pair it to the computer, tablet or phone just as you would any other BT device. Now

you can connect buttons from the 12 input pins, when a button is pressed, it sends a

keypress to the computer. We pre-program the module to send the 4 arrow keys,

return, space, 'w', 'a', 's', 'd', '1' and '2' by default. Advanced users can reprogram the

module's keys using an FTDI or other Serial console cable, for any HID key report

they desire.

You can pair multiple Bluefruit's to a single device, each one has a unique identifier.

These modules are FCC & CE certified and are RoHS-compliant so they are easy to

integrate into your project.

If you want to have better control over the data sent, connect a microcontroller to the

RX pin at 3-5V logic level, 9600 baud, and send ASCII data: it will be 'typed out'

character by character. We also have support for various non-printable characters

such as ESC, Shift, F1-F12, etc. as well as toggling the virtual keyboard on iOS.

©Adafruit Industries Page 3 of 45

New in v1.1 (shipping as of Oct 22 2013) - We've made Bluefruit EZ-Key even better,

you can now map keys to mouse button clicks and mouse movement (up/down/left/

right) as well as send mouse commands over the UART. We also now have 'over the

air' remapping, no serial cable required to re-map the pins!

New in v1.2 (shipping as of Nov 7 2013) - We have added support for mapping buttons

to some "Consumer Report" keys, also known as Multimedia buttons.

Pinouts

This is a tour of all the pins available on the EZ-Key module. The module consists of a

CSR BlueCore with custom firmware on a breakout PCB. The PCB makes it easy to

©Adafruit Industries Page 4 of 45

use and hard to break. Every pin and connection you want is available on the

breakout board, and there's even some handy mounting holes.

Let's take a tour of the pins! Starting with the top control & power pins...

Top Row

Grounds and Vin

To use this module, you will need to at least power it. Powering it is easy though, you

can give it anywhere between 3-16VDC and the power input is reverse-polarity

protected. Connect the positive wire from your battery to Vin and ground to the Grou

nds or G pin. There is an output from the onboard 3.3V voltage regulator on pin 3v

that will let you snag ~100mA of current for other sensors, microcontrollers or

whatever.

Control and LEDs

To the right of the power pins, there are some control pins

RS - this is the reset pin. To reset the module, pull this pin to ground. It does not

affect pairing.

L2 - this is the same output that is connected to the Pair LED. If you want to put

this in a box and have an external Pair indicator LED, wire an LED from this pin,

through a 1K resistor, to ground.

PB - this is the pair button pin. It is connected to the button onboard that is used

to reset the pairing. If you want to make another, external pair button, connect a

switch from this key to 3V (not ground!)

L1 - this is the same output that is connected to the Key LED. If you want to put

this in a box and have an external Key-press indicator LED, wire an LED from this

pin, through a 1K resistor, to ground.

RX - this is the UART input, used if you want to send UART->Keypress data, or

re-map the buttons. It is 5V compliant, use 3V-5V TTL logic, 9600 baud.

TX - this is the UART output, used for watching debug data or re-mapping the

buttons. It is 3V logic level output.

Bottom Row

This row is easy, it is 12 individual pins that connect to a switch that will trigger a

keypress. Each pin has a pullup resistor internally to 3V. To activate a keypress,

connect the pin to ground. When it is connect to ground, a KEYDOWN is sent, when it

•

•

•

•

•

•

©Adafruit Industries Page 5 of 45

is disconnected, a KEYUP is sent.

Do not inject 5V into these pins! They connect directly to the BT module which runs at

3V.

Left Port (6-pins)
Despite looking a lot like an FTDI connector, this is the programming/test port. We use

this at the Adafruit factory to get your modules tested. It is not field reprogrammable.

Do not connect anything to these pins, it could damage or permanently brick the EZ-

Key!

Pairing to Bluefruit

Before you can use the EZ-Key you have to pair it to your computer, laptop, tablet or

phone. It's pretty easy to do this because EZ-Key acts just like a Bluetooth keyboard.

We have detailed walkthroughs for Windows, Mac and Linux (Raspberry Pi)

We have also paired it without difficulty to iOS devices such as iPhone and iPad (any

version) and an Android tablet but don't have a detailed walkthrough. Check your

device's documentation on how to pair a keyboard. It's usually really easy and just

requires turning on BT and then scanning for the powered up module.

You only have to pair once to your device. After that, it will auto-connect.

If you ever have difficulties with auto-connecting, especially if you do a system update

or upgrade, just follow the pairing procedure from the beginning. It only takes a few

minutes.

The following GIF shows meaning of the red LED on board.

©Adafruit Industries Page 6 of 45

Windows

This page will show you how to pair your Bluefruit EZ-Key to a Windows computer. It's

tested on XP and 7 but should work similarly with Windows 8.

You only have to pair once - after the EZ-Key is paired to a computer it will auto-

connect from then on

First up, you'll have to make sure you have Bluetooth v2.1 or greater on your

computer. Many laptops have BT built in and unless its a really old machine (< 2008),

the built in BT should be OK. If you do not have BT built in, you'll need a USB dongle

such as this one (http://adafru.it/1327)

Step 0. Install USB adapter
99% of the time, you can just plug it in and Windows will automatically install the

drivers, as there are only two main chipsets (CSR & Broadcom) and they have built in

support.

Many ultra-low cost USB adapters you may find are BT v2.0 and NOT v2.1. You

MUST have a v2.1 or greater adapter, as v2.0 does not support the way we

handle pairing. If you get a BT v4 module you will have no problems, so please

do not use "$2" adapters!

©Adafruit Industries Page 7 of 45

http://www.adafruit.com/products/1327
http://www.adafruit.com/products/1327

Step 1. Power the Bluefruit EZ-Key and
Press the Pair Button
The title of this step is pretty much what you have to do. Remember that you have

solder the 0.1" headers to the module or at least solder wires to the Vin and Ground

connections. Connect Vin to 3 to 16VDC (5V is ideal) and ground to the ground power

wire.

You should see the red LED blink. Now press the mini button on the EZ Key for 5

seconds and release, this will erase any old pairing information and let you re-pair to

your computer.

The red LED will now blink at a steady once-a-second.

Step 2 Pair using Windows Bluetooth
services
In the Control Panel, find the Add Bluetooth Device entry

©Adafruit Industries Page 8 of 45

Wait a minute until you see the Adafruit Keyboard device show up with the full ID

name, it will look like this:

Select the Adafruit EZ-Key and press Next

It may take up to 3 minutes to get the driver and install it, this is normal. If Windows

complains about a timeout, just start the process over (it's rare for that to happen)

If it asks you for a passcode, the pairing code is 1234

©Adafruit Industries Page 9 of 45

That's it! You will now see the red LED blinking much slower, to indicate it is paired

succesfully

Mac

This page will show you how to pair your Bluefruit EZ-Key to a Mac OS X computer.

Connecting to iOS is nearly identical.

You only have to pair once - after the EZ-Key is paired to a computer it will auto-

connect from then on

We have never found a Mac without BT built in so lucky for you, no extra module is

required! (http://adafru.it/1327)

Step 1. Power the Bluefruit EZ-Key and
Press the Pair Button
The title of this step is pretty much what you have to do. Remember that you have

solder the 0.1" headers to the module or at least solder wires to the Vin and Ground

©Adafruit Industries Page 10 of 45

http://www.adafruit.com/products/1327

connections. Connect Vin to 3 to 16VDC (5V is ideal) and ground to the ground power

wire.

You should see the red LED blink. Now press the mini button on the EZ Key for 5

seconds and release, this will erase any old pairing information and let you re-pair to

your computer.

The red LED will now blink at a steady once-a-second.

Step 2. Pair Using MacOS Bluetooth
Service

In the System Preferences, find the Bluetooth icon

©Adafruit Industries Page 11 of 45

Double-click to open, make sure Bluetooth is ON (some computers have it off, you

must have BT on!) and click Set Up New Device

Let the assistant run for a minute until it locates and displays the EZ-Key module

Select it and click Continue

It'll take a minute for it to pair

©Adafruit Industries Page 12 of 45

That's it! If you get a pop-up asking you to configure the keyboard layout, just close or

quit that window.

You can now see that the EZ-Key is paired and connected.

©Adafruit Industries Page 13 of 45

Linux (e.g. Raspberry Pi)

This page will show you how to pair your Bluefruit EZ-Key to a Linux computer. It's

tested on Raspberry Pi & Raspbian but the instructions will be similar for other

machines and distros (we hope!) Check your distro documentation if this doesn't

work.

Thanks to http://www.correlatedcontent.com/blog/bluetooth-keyboard-on-the-

raspberry-pi/ () for the details!

You only have to pair once - after the EZ-Key is paired to a computer it will auto-

connect from then on

First up, you'll have to make sure you have Bluetooth v2.1 or greater on your

computer. Many laptops have BT built in and unless its a really old machine (< 2008),

the built in BT should be OK. If you do not have BT built in, you'll need a USB dongle

such as this one (http://adafru.it/1327)

©Adafruit Industries Page 14 of 45

http://www.correlatedcontent.com/blog/bluetooth-keyboard-on-the-raspberry-pi/
http://www.correlatedcontent.com/blog/bluetooth-keyboard-on-the-raspberry-pi/
http://www.correlatedcontent.com/blog/bluetooth-keyboard-on-the-raspberry-pi/
http://www.correlatedcontent.com/blog/bluetooth-keyboard-on-the-raspberry-pi/
http://www.adafruit.com/products/1327
http://www.adafruit.com/products/1327

Step 0 Plug in BT Adapter

With the Raspberry Pi off, plug in the BT module and reboot.

Step 1 Update & Install Bluez
Make sure you have Internet connectivity on your Pi so you can install the following

updates & software for Bluetooth control.

All of the following must be typed into a Terminal window or Console or Command

line.

sudo apt-get update

sudo update-rc.d -f dbus defaults

sudo apt-get install bluez python-gobject

Many ultra-low cost USB adapters you may find are BT v2.0 and NOT v2.1. You

MUST have a v2.1 or greater adapter, as v2.0 does not support the way we

handle pairing. If you get a BT v4 module you will have no problems, so please

do not use "$2" adapters!

©Adafruit Industries Page 15 of 45

Now run

hcitool dev

to see the bluetooth USB module

Lastly, we'll make a minor edit to allow passkey-less pairing. Run

sudo nano /usr/bin/bluez-simple-agent

To edit the agent that manages BT pairing. Type Control-W to search for KeyboardDis

play

©Adafruit Industries Page 16 of 45

Then edit that line and change KeyoardDisplay to DisplayYesNo

Step 2. Power the Bluefruit EZ-Key and
Press the Pair Button
The title of this step is pretty much what you have to do. Remember that you have

solder the 0.1" headers to the module or at least solder wires to the Vin and Ground

connections. Connect Vin to 3 to 16VDC (5V is ideal) and ground to the ground power

wire.

©Adafruit Industries Page 17 of 45

You should see the red LED blink. Now press the mini button on the EZ Key for 5

seconds and release, this will erase any old pairing information and let you re-pair to

your computer.

The red LED will now blink at a steady once-a-second.

Step 3. Scan & Connect to Bluefruit Module

Now it's time to find the Bluefruit device. Run

hcitool scan

to scan for devices. You may have to run it once or twice to see the Adafruit device

pop up

See that long number before the name? Starts with 00:18:... ? Each module has a uniq

ue identifier number. Your setup will have a different ID so be sure to type out the

exact same ID you have. We will proceed as if you were pairing to the module on my

desk :)

We will now create a device for the keyboard. Type in

sudo bluez-simple-agent hci0 00:18:96:B0:04:82

But changing it to the ID number you have

©Adafruit Industries Page 18 of 45

Next, we will trust this keyboard. Type in

sudo bluez-test-device trusted 00:18:96:B0:04:82 yes

(don't forget that yes at the end)

followed by

sudo bluez-test-device trusted 00:18:96:B0:04:82

(no yes at the end)

You should see a 1 after the last command. If you get a 0 try again, check that you

typed the #'s right.

Finally, we can connect! The last command to run is:

sudo bluez-test-input connect 00:18:96:B0:04:82

If you want to ever remove the pairing, type in

sudo bluez-test-device remove 00:18:96:B0:04:82

Now you will notice the red LED on the module blink slower.

©Adafruit Industries Page 19 of 45

User Manual

The user manual is the shortest page of this guide, because its really really easy to

get going.

Power the EZ-Key with 3-16VDC power. Batteries work great: 3 or 4 alkaline or

rechargeable 1.5V, a 9V, Lithium Ion/Polymer, Lead acid... Whatever you have!

Pair the EZ-Key to your computer, laptop, tablet or phone

Connect one side of a switch to GPIO #0 through #11. Connect the other side to

Ground.

Open up a notepad or text editor on the paired computer

Press the switch to send a key code

Profit?

You will be able to see the green LED blink every time it detects a switch and sends

the keycode.

Since GPIO #0 through #3 are arrow keys, they might be more difficult to detect if the

notepad software is empty. Try GPIO #4 through #11 which send printable characters

When a switch is pressed, a KEYDOWN command is sent, when it is release, a

matching KEYUP goes out. You can have up to 6 switches pressed at once and it will

be like they were pressed all at the same time. 6 is a strict limit of Bluetooth.

Don't forget: You don't have to use a plain clicky switch! Try tilt sensors, reed

switches, conductive velcro, big stompy buttons, arcade joysticks, ANYTHING that

makes/breaks two contacts

REMEMBER! This is a USB keyboard so if you are SSH'd or connecting via a

Console cable, you WON'T see keystrokes appear. On a Raspberry Pi you have

to connect a TV to the Composite or HDMI outputs to see the keyboard input.

1.

2.

3.

4.

5.

6.

©Adafruit Industries Page 20 of 45

Here is the default switch-to-key mapping:

#0 - Up Arrow

#1 - Down Arrow

#2 - Left Arrow

#3 - Right Arrow

#4 - Return

#5 - Space

#6 - the number '1'

#7 - the number '2'

#8 - lowercase 'w'

#9 - lowercase 'a'

#10 - lowercase 's'

#11 - lowercase 'd'

You can customize these with a little bit of effort, see the Remapping Buttons page.

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 21 of 45

Dimensions in Inches & mm

©Adafruit Industries Page 22 of 45

Sending Keys/Mouse Via Serial

For advanced users, you may want to hook up your Bluefruit to a microcontroller and

send characters or strings via Bluetooth.

You can do this with the UART port on the EZ-Key. The UART pins are labeled RX

(data going into the module) and TX (debug data coming out of the module). You can

get away with just connecting to RX. The RX pin is 5V compliant, you can send it 3V

or 5V TTL logic levels. Use 9600 baud serial, all microcontrollers will support this.

You can also send raw HID Keyboard reports for complex key-stroke combinations

and controls.

In version v1.1 (Oct 22, 2013 or later) HID Mouse reports are also supported, you can

send mouse movement and clicks via the UART and microcontroller

In version v1.2 (Nov 2013 or later) HID consumer report keys are supported, there are

©Adafruit Industries Page 23 of 45

a few supported 'multimedia keys' - see below for a list and how to send via the UART

Don't forget to also tie a ground pin from your microcontroller to the EZ-Key for the

logic ground reference!

Printable character keymap

For printing ASCII characters, you can simply send those to the UART and they will be

'typed out'. See below for the list of printable ASCII characters, starting with 0x20 and

ending with 0x7E

Thanks to Wikipedia for this nice chart! ()

Binary Oct Dec Hex Glyph

010 0000 040 32 20

010 0001 041 33 21 !

010 0010 042 34 22 "

010 0011 043 35 23 #

010 0100 044 36 24 $

010 0101 045 37 25 %

010 0110 046 38 26 &

010 0111 047 39 27 '

010 1000 050 40 28 (

010 1001 051 41 29)

010 1010 052 42 2A *

010 1011 053 43 2B +

010 1100 054 44 2C ,

010 1101 055 45 2D -

010 1110 056 46 2E .

010 1111 057 47 2F /

011 0000 060 48 30 0

011 0001 061 49 31 1

011 0010 062 50 32 2

011 0011 063 51 33 3

011 0100 064 52 34 4

011 0101 065 53 35 5

©Adafruit Industries Page 24 of 45

http://en.wikipedia.org/wiki/ASCII_chart

011 0110 066 54 36 6

011 0111 067 55 37 7

011 1000 070 56 38 8

011 1001 071 57 39 9

011 1010 072 58 3A :

011 1011 073 59 3B ;

011 1100 074 60 3C <

011 1101 075 61 3D =

011 1110 076 62 3E >

011 1111 077 63 3F ?

Binary Oct Dec Hex Glyph

100 0000 100 64 40 @

100 0001 101 65 41 A

100 0010 102 66 42 B

100 0011 103 67 43 C

100 0100 104 68 44 D

100 0101 105 69 45 E

100 0110 106 70 46 F

100 0111 107 71 47 G

100 1000 110 72 48 H

100 1001 111 73 49 I

100 1010 112 74 4A J

100 1011 113 75 4B K

100 1100 114 76 4C L

100 1101 115 77 4D M

100 1110 116 78 4E N

100 1111 117 79 4F O

101 0000 120 80 50 P

101 0001 121 81 51 Q

101 0010 122 82 52 R

101 0011 123 83 53 S

101 0100 124 84 54 T

101 0101 125 85 55 U

101 0110 126 86 56 V

101 0111 127 87 57 W

©Adafruit Industries Page 25 of 45

101 1000 130 88 58 X

101 1001 131 89 59 Y

101 1010 132 90 5A Z

101 1011 133 91 5B [

101 1100 134 92 5C \

101 1101 135 93 5D]

101 1110 136 94 5E ^

101 1111 137 95 5F _

Binary Oct Dec Hex Glyph

110 0000 140 96 60 `

110 0001 141 97 61 a

110 0010 142 98 62 b

110 0011 143 99 63 c

110 0100 144 100 64 d

110 0101 145 101 65 e

110 0110 146 102 66 f

110 0111 147 103 67 g

110 1000 150 104 68 h

110 1001 151 105 69 i

110 1010 152 106 6A j

110 1011 153 107 6B k

110 1100 154 108 6C l

110 1101 155 109 6D m

110 1110 156 110 6E n

110 1111 157 111 6F o

111 0000 160 112 70 p

111 0001 161 113 71 q

111 0010 162 114 72 r

111 0011 163 115 73 s

111 0100 164 116 74 t

111 0101 165 117 75 u

111 0110 166 118 76 v

111 0111 167 119 77 w

111 1000 170 120 78 x

111 1001 171 121 79 y

©Adafruit Industries Page 26 of 45

111 1010 172 122 7A z

111 1011 173 123 7B {

111 1100 174 124 7C |

111 1101 175 125 7D }

111 1110 176 126 7E ~

Non-printable Characters

There's a lot of other keycodes you may want to send, here is the mapping from the

8-bit byte to the keycode sent.

HEX Keyname

0x01 Insert

0x02 Home

0x03 Page Up

0x04 Delete

0x05 End

0x06 Page Down

0x07 Right Arrow

0x08 Backspace

0x09 Tab

0x0A Enter

0x0B Left Arrow

0x0C Down Arrow

0x0D Enter

0x0E Up Arrow

0x0F - 0x1A F1 - F12

0x1B Esc

0x1C Caps Lock

0x1D Scroll Lock

0x1E Break

0x1F Num Lock

0x20-0x7E Printable Ascii

0x7F Toggle iOS Keyboard

©Adafruit Industries Page 27 of 45

0xE0 Left Control

0xE1 Left Shift

0xE2 Left Alt

0xE3 Left GUI

0xE4 Right Control

0xE5 Right Shift

0xE6 Right Alt

0xE7 Right GUI

Raw HID Keyboard Reports

Bluefruit can send raw HID Keyboard reports. This allows sending any modifier keys +

up to 6 keycodes at once. Its advanced but super useful for when you want to have

fine-control of keypresses!

Raw HID reports start with 0xFD and have 8 bytes following. For keyboard, its

0xFD [modifiers] 0x00 [keycode1] [keycode2] [keycode3] [keycode4] [keycode5] [keyc

ode6]

Here's a list of USB HID keycodes (its in java format but you get the idea), you can

also get another list here http://www.freebsddiary.org/APC/usb_hid_usages.php ()

under "7 Keyboard"

// Bits in usbHidKeyboardInput.modifiers

final byte MODIFIER_NONE =byte((0));

final byte MODIFIER_CONTROL_LEFT =byte((1<<0));

final byte MODIFIER_SHIFT_LEFT =byte((1<<1));

final byte MODIFIER_ALT_LEFT =byte((1<<2));

final byte MODIFIER_GUI_LEFT =byte((1<<3));

final byte MODIFIER_CONTROL_RIGHT =byte((1<<4));

final byte MODIFIER_SHIFT_RIGHT =byte((1<<5));

final byte MODIFIER_ALT_RIGHT =byte((1<<6));

final byte MODIFIER_GUI_RIGHT =byte((1<<7));

// Values for usbHidKeyboardInput.keyCodes

// Only the key codes for common keys are defined here. See Hut1_12.pdf for a full

list.

final byte KEY_NONE =byte(0x00);

final byte KEY_A =byte(0x04);

final byte KEY_B =byte(0x05);

final byte KEY_C =byte(0x06);

final byte KEY_D =byte(0x07);

final byte KEY_E =byte(0x08);

final byte KEY_F =byte(0x09);

final byte KEY_G =byte(0x0A);

final byte KEY_H =byte(0x0B);

Raw USB HID keycodes are not the same as ASCII!

©Adafruit Industries Page 28 of 45

http://www.freebsddiary.org/APC/usb_hid_usages.php

final byte KEY_I =byte(0x0C);

final byte KEY_J =byte(0x0D);

final byte KEY_K =byte(0x0E);

final byte KEY_L =byte(0x0F);

final byte KEY_M =byte(0x10);

final byte KEY_N =byte(0x11);

final byte KEY_O =byte(0x12);

final byte KEY_P =byte(0x13);

final byte KEY_Q =byte(0x14);

final byte KEY_R =byte(0x15);

final byte KEY_S =byte(0x16);

final byte KEY_T =byte(0x17);

final byte KEY_U =byte(0x18);

final byte KEY_V =byte(0x19);

final byte KEY_W =byte(0x1A);

final byte KEY_X =byte(0x1B);

final byte KEY_Y =byte(0x1C);

final byte KEY_Z =byte(0x1D);

final byte KEY_1 =byte(0x1E);

final byte KEY_2 =byte(0x1F);

final byte KEY_3 =byte(0x20);

final byte KEY_4 =byte(0x21);

final byte KEY_5 =byte(0x22);

final byte KEY_6 =byte(0x23);

final byte KEY_7 =byte(0x24);

final byte KEY_8 =byte(0x25);

final byte KEY_9 =byte(0x26);

final byte KEY_0 =byte(0x27);

final byte KEY_RETURN =byte(0x28);

final byte KEY_ESCAPE =byte(0x29);

final byte KEY_BACKSPACE =byte(0x2A);

final byte KEY_TAB =byte(0x2B);

final byte KEY_SPACE =byte(0x2C);

final byte KEY_MINUS =byte(0x2D);

final byte KEY_EQUAL =byte(0x2E);

final byte KEY_BRACKET_LEFT =byte(0x2F);

final byte KEY_BRACKET_RIGHT =byte(0x30);

final byte KEY_BACKSLASH =byte(0x31);

final byte KEY_EUROPE_1 =byte(0x32);

final byte KEY_SEMICOLON =byte(0x33);

final byte KEY_APOSTROPHE =byte(0x34);

final byte KEY_GRAVE =byte(0x35);

final byte KEY_COMMA =byte(0x36);

final byte KEY_PERIOD =byte(0x37);

final byte KEY_SLASH =byte(0x38);

final byte KEY_CAPS_LOCK =byte(0x39);

final byte KEY_F1 =byte(0x3A);

final byte KEY_F2 =byte(0x3B);

final byte KEY_F3 =byte(0x3C);

final byte KEY_F4 =byte(0x3D);

final byte KEY_F5 =byte(0x3E);

final byte KEY_F6 =byte(0x3F);

final byte KEY_F7 =byte(0x40);

final byte KEY_F8 =byte(0x41);

final byte KEY_F9 =byte(0x42);

final byte KEY_F10 =byte(0x43);

final byte KEY_F11 =byte(0x44);

final byte KEY_F12 =byte(0x45);

final byte KEY_PRINT_SCREEN =byte(0x46);

final byte KEY_SCROLL_LOCK =byte(0x47);

final byte KEY_PAUSE =byte(0x48);

final byte KEY_INSERT =byte(0x49);

final byte KEY_HOME =byte(0x4A);

final byte KEY_PAGE_UP =byte(0x4B);

final byte KEY_DELETE =byte(0x4C);

final byte KEY_END =byte(0x4D);

final byte KEY_PAGE_DOWN =byte(0x4E);

final byte KEY_ARROW_RIGHT =byte(0x4F);

final byte KEY_ARROW_LEFT =byte(0x50);

©Adafruit Industries Page 29 of 45

final byte KEY_ARROW_DOWN =byte(0x51);

final byte KEY_ARROW_UP =byte(0x52);

final byte KEY_NUM_LOCK =byte(0x53);

final byte KEY_KEYPAD_DIVIDE =byte(0x54);

final byte KEY_KEYPAD_MULTIPLY =byte(0x55);

final byte KEY_KEYPAD_SUBTRACT =byte(0x56);

final byte KEY_KEYPAD_ADD =byte(0x57);

final byte KEY_KEYPAD_ENTER =byte(0x58);

final byte KEY_KEYPAD_1 =byte(0x59);

final byte KEY_KEYPAD_2 =byte(0x5A);

final byte KEY_KEYPAD_3 =byte(0x5B);

final byte KEY_KEYPAD_4 =byte(0x5C);

final byte KEY_KEYPAD_5 =byte(0x5D);

final byte KEY_KEYPAD_6 =byte(0x5E);

final byte KEY_KEYPAD_7 =byte(0x5F);

final byte KEY_KEYPAD_8 =byte(0x60);

final byte KEY_KEYPAD_9 =byte(0x61);

final byte KEY_KEYPAD_0 =byte(0x62);

final byte KEY_KEYPAD_DECIMAL =byte(0x63);

final byte KEY_EUROPE_2 =byte(0x64);

final byte KEY_APPLICATION =byte(0x65);

final byte KEY_POWER =byte(0x66);

final byte KEY_KEYPAD_EQUAL =byte(0x67);

final byte KEY_F13 =byte(0x68);

final byte KEY_F14 =byte(0x69);

final byte KEY_F15 =byte(0x6A);

final byte KEY_CONTROL_LEFT =byte(0xE0);

final byte KEY_SHIFT_LEFT =byte(0xE1);

final byte KEY_ALT_LEFT =byte(0xE2);

final byte KEY_GUI_LEFT =byte(0xE3);

final byte KEY_CONTROL_RIGHT =byte(0xE4);

final byte KEY_SHIFT_RIGHT =byte(0xE5);

final byte KEY_ALT_RIGHT =byte(0xE6);

final byte KEY_GUI_RIGHT =byte(0xE7);

Here is the Arduino function we use to send a raw keyCommand. For example, if you

want to send the keystroke for the letter 'a' (no shift) you'll want to call

keyCommand(0, 4);

to press the keycode 4 ('a') followed by a release

keyCommand(0, 0);

if you want to send the keystroke for SHIFT 'a' you'll want to call

keyCommand(MODIFIER_SHIFT_LEFT, 4);

if you want to send the keystroke for CTRL-SHIFT 'a' you'll want to call

keyCommand(MODIFIER_SHIFT_LEFT | MODIFIER_CONTROL_LEFT, 4);

You can also send multiple keystrokes ('chords'). If you want to press 'a' and 'b' at the

same time, send

keyCommand(0, 4, 5);

©Adafruit Industries Page 30 of 45

for keycodes 4 and 5 at the same time. You can send up to 6 consecutive keys at

once, don't forget to send the release 'key up' command or the key will be 'stuck'!

void keyCommand(uint8_t modifiers, uint8_t keycode1, uint8_t keycode2 = 0, uint8_t

keycode3 = 0,

 uint8_t keycode4 = 0, uint8_t keycode5 = 0, uint8_t keycode6 = 0) {

 BT.write(0xFD); // our command

 BT.write(modifiers); // modifier!

 BT.write((byte)0x00); // 0x00

 BT.write(keycode1); // key code #1

 BT.write(keycode2); // key code #2

 BT.write(keycode3); // key code #3

 BT.write(keycode4); // key code #4

 BT.write(keycode5); // key code #5

 BT.write(keycode6); // key code #6

}

Raw HID Mouse Reports

As of v1.1 (shipping Oct 22, 2013) Bluefruit can also send raw HID Mouse reports. This

allows moving and clicking a virtual mouse! Mouse reports are relative movement. So

you can send 'go left 4 units' but you cant send 'go to absolute location x, y'

Raw HID reports start with 0xFD and have 8 bytes following. For mouse, its

0xFD 0x00 0x03 [buttons] [left/right] [up/down] 0x0 0x0 0x0

For buttons, its a bitmask, left button (button 0) is 0x01 right button (button 1) is 0x02,

etc so that button n is (1 << n) you can | these together

up/down/left/right are again, relative movements. You can move up to +127 up/left to

-127 down/right units at a time.

void mouseCommand(uint8_t buttons, uint8_t x, uint8_t y) {

 BT.write(0xFD);

 BT.write((byte)0x00);

 BT.write((byte)0x03);

 BT.write(buttons);

 BT.write(x);

 BT.write(y);

 BT.write((byte)0x00);

 BT.write((byte)0x00);

 BT.write((byte)0x00);

}

For example if we wanted to click the left button and drag the mouse down 50 units

send

mouseCommand(0x1, 0, -50);

©Adafruit Industries Page 31 of 45

Raw HID Consumer Reports

As of v1.2, Bluefruit can send raw HID consumer reports. There are "Home",

"KeyboardLayout", "Search", "Snapshot", "VolumeUp", "VolumeDown", "Play/Pause",

"Fast Forward", "Rewind","Scan Next Track", "Scan Previous Track", "Random

Play","Stop" keys you can use with a 2 bytes bitmask.

Raw HID consumer report start with 0xFD and have 8 bytes following. For consumer

keys, its

0xFD 0x00 0x02 [bitmask] [bitmask] 0x0 0x0 0x0 0x0

"Home" is bit 0, the bitmask is 0x01 0x00

"Stop" is bit 12, the bitmask is 0x00 0x10

You can | these together like mouse report

void consumerCommand(uint8_t mask0,uint8_t mask1) {

 BT.write(0xFD);

 BT.write((byte)0x00);

 BT.write((byte)0x02);

 BT.write(mask0);

 BT.write(mask1);

 BT.write((byte)0x00);

 BT.write((byte)0x00);

 BT.write((byte)0x00);

 BT.write((byte)0x00);

}

For example if we wanted to click the Play/Pause

consumerCommand(0x40,0x00);

Then release it

consumerCommand(0x00,0x00);

Testing Sketch (Arduino)
We use this code to generate/test the various UART-sendable characters, you can use

it for reference to control via an Arduino or other microcontroller. Remember that

some of these non-printing characters can really confuse your computer so use with

care!

// Adafruit test code for Bluefruit EZ-Key serial reports

// Uncomment tests as you wish, remember that this will

// send various keypresses to your computer which may really

// annoy it! We used

©Adafruit Industries Page 32 of 45

// http://www.cambiaresearch.com/articles/15/javascript-char-codes-key-codes

// to test the non-printing characters!

// Connect the RX pin on the EZ-Key to digital #2 on the UNO

#include <SoftwareSerial.h>

SoftwareSerial BT = SoftwareSerial(3, 2);

void printabletest() {

 Serial.println("Testing printable 0x20-0x7E...");

 for (char c = 0x20; c <= 0x7E; c++) {

 Serial.write(c);

 BT.write(c);

 delay(10);

 }

 BT.write('\n');

 delay(3000);

 Serial.read(); // eat one char

 Serial.println();

 for (uint16_t i=0; i<200; i++) {

 while (Serial.available())

 Serial.write(Serial.read());

 delay(10);

 }

}

void nonprinting() {

 Serial.println("Insert");

 BT.write(1); delay(1000);

 Serial.println("Home");

 BT.write(2); delay(1000);

 Serial.println("Page Up");

 BT.write(3); delay(1000);

 Serial.println("Delete");

 BT.write(4); delay(1000);

 Serial.println("End");

 BT.write(5); delay(1000);

 Serial.println("Page Down");

 BT.write(6); delay(1000);

 Serial.println("Right Arrow");

 BT.write(7); delay(1000);

 Serial.println("Backspace");

 BT.write(8); delay(1000);

 Serial.println("Tab");

 BT.write(9); delay(1000);

 Serial.println("Enter");

 BT.write(10); delay(1000);

 Serial.println("Left Arrow");

 BT.write(11); delay(1000);

 Serial.println("Down Arrow");

 BT.write(12); delay(1000);

 Serial.println("Enter");

 BT.write(13); delay(1000);

 Serial.println("Up Arrow");

 BT.write(14); delay(1000);

 for (uint8_t i=15; i<27; i++) {

 Serial.print("F"); Serial.println(i-14, DEC);

 BT.write(i); delay(500);

 }

 Serial.println("ESC");

 BT.write(27); delay(1000);

 Serial.println("Capslock");

 BT.write(28); delay(1000);

 Serial.println("Scroll lock");

 BT.write(29); delay(1000);

 Serial.println("Break");

©Adafruit Industries Page 33 of 45

 BT.write(30); delay(1000);

 Serial.println("Numlock");

 BT.write(31); delay(500);

}

void altkeystest() {

 Serial.println("Left Control\n");

 BT.write(0xE0);

 delay(500);

 Serial.println("Left Shift\n");

 BT.write(0xE1);

 delay(500);

 Serial.println("Left Alt\n");

 BT.write(0xE2);

 delay(500);

 Serial.println("Left GUI\n");

 BT.write(0xE3);

 delay(500);

 Serial.println("Right Control\n");

 BT.write(0xE4);

 delay(500);

 Serial.println("Right Shift\n");

 BT.write(0xE5);

 delay(500);

 Serial.println("Right Alt\n");

 BT.write(0xE6);

 delay(500);

 Serial.println("Right GUI\n");

 BT.write(0xE7);

 delay(500);

}

void iphonekeyboard() {

 while (1) {

 Serial.println("toggle keyboard");

 BT.write(0x7F);

 delay(1000);

 }

}

void keyCommand(uint8_t modifiers, uint8_t keycode1, uint8_t keycode2 = 0, uint8_t

keycode3 = 0,

 uint8_t keycode4 = 0, uint8_t keycode5 = 0, uint8_t keycode6 = 0) {

 BT.write(0xFD); // our command

 BT.write(modifiers); // modifier!

 BT.write((byte)0x00); // 0x00

 BT.write(keycode1); // key code #1

 BT.write(keycode2); // key code #2

 BT.write(keycode3); // key code #3

 BT.write(keycode4); // key code #4

 BT.write(keycode5); // key code #5

 BT.write(keycode6); // key code #6

}

void rawkeytest() {

 // test sending a single 'a' (keycode 4)

 keyCommand(0, 4);

 delay(100);

 keyCommand(0, 0);

}

/************** Support added in v1.1 */

void rawmousetest() {

 Serial.println("Move mouse!");

 Serial.println("Right");

 mouseCommand(0, -100, 0);

 delay(200);

 Serial.println("Down");

©Adafruit Industries Page 34 of 45

 mouseCommand(0, 0, -100);

 delay(200);

 Serial.println("Left");

 mouseCommand(0, 100, 0);

 delay(200);

 Serial.println("Up");

 mouseCommand(0, 0, 100);

 delay(200);

}

void mouseCommand(uint8_t buttons, uint8_t x, uint8_t y) {

 BT.write(0xFD);

 BT.write((byte)0x00);

 BT.write((byte)0x03);

 BT.write(buttons);

 BT.write(x);

 BT.write(y);

 BT.write((byte)0x00);

 BT.write((byte)0x00);

 BT.write((byte)0x00);

}

/************** Support added in v1.1 */

void setup() {

 Serial.begin(9600);

 BT.begin(9600);

 Serial.println("Softserial/BT test!\n\rPress any key+return to start");

 while (! Serial.available());

 printabletest(); delay(200);

 //altkeystest();

 //nonprinting();

 //iphonekeyboard();

 //rawkeytest();

 //Supported in v1.1

 //rawmousetest();

}

void loop() {

}

Remapping the Buttons (Serial)

The default buttons->keypresses will be satisfactory for most projects. However, you

may want to customize those keys so when a GPIO pin is pulled to ground, a different

keystroke is sent. It isn't that difficult to do! However, you will need an FTDI Friend (htt

p://adafru.it/284) or USB console cable (http://adafru.it/954) to connect the EZ-Key to

your computer.

If you have a Bluefruit v1.1 or later, you can wirelessly re-map the keys, no need to

use a console cable (altho the console cable technique will still work). Original

v1.0 Bluefruits can only be remapped over serial console

©Adafruit Industries Page 35 of 45

http://www.adafruit.com/products/284
http://www.adafruit.com/products/954

If using an FTDI friend, connect the TX pin of the EZ-Key to the RX pin on your FTDI

friend and the RX pin to the TX pin (receiver goes to transmit). Also be sure to power

the EZ-Key. You do not have to pair it for this remapping

You will have to put the EZ-Key into re-mapping mode. To do this, the pair-button must

be pressed while the module is powered up. The easiest way to do this is to

disconnect the red Vin wire from the console cable, press down on the button, then

plug in the red wire, that's it!

Load Processing Sketch

We wrote the re-mapping software in Processing. Processing is cross-platform and

easy to install (). Please download Processing v1.5.1 () since that's known to work

You'll also need to download and install the ControlP5 library

Click to download the ControlP5

library

Then click below to download the remap software

EZ-Key_Remapper.zip

As a 'safety' procedure, every time you power the module with the re-pair button

pressed (to enter remapping mode) it will reload the default keymap. This is so if

you somehow really mess things up, you can always get back to the default

keymap without a console cable

©Adafruit Industries Page 36 of 45

file:///home/download/?processing
file:///home/download/?processing
https://processing.org/download/?processing
http://www.sojamo.de/libraries/controlP5/
http://learn.adafruit.com/system/assets/assets/000/011/306/original/EZ-Key_Remapper.zip?1380305964

Uncompress and open the remapper.pde in Processing. Plug in the USB console

cable or FTDI adapter. Select Sketch->Run menu item and look in the debug window

below, you should see Found Serial Ports: and then a list of ports. On Windows, it will

be something like COM1, COM2, COM3 etc. On Mac/Linux it will be something like /

dev/USBtty or /dev/cu.usbserial

Copy and paste the list into a notepad, now File->Run it again, this time with the USB

console cable unplugged. The list should be one line shorter. In this case COM3 is

missing. That means that the cable name is COM3

in the line

myPort = new Serial(this, "COM3", 9600);

Change "COM3" to whatever the cable name is. Again, for Mac or Linux it will

probably be /dev/cu.something

Replug in the FTDI/Console cable.

Select File->Run again to start the script with the correct /dev or COM port

Now disconnect the red wire that is powering the EZ-Key, press and hold the Pair

button on the module and reconnect the red wire. You should see:

Adafruit Bluefruit HID 9/18/2013

©Adafruit Industries Page 37 of 45

Remap ready!

Appear in the bottom half of the screen. Now click that large gray square window to

remap

You should see

OK

Set Mapping:128

Indicating that the mapping was sent.

©Adafruit Industries Page 38 of 45

Customizing Keys

OK now you want to actually change the key report. Each of the 12 keys has a report.

This is an example for #0:

hid_keys.set_key_report(0, MODIFIER_NONE, KEY_A, KEY_NONE, KEY_NONE,

KEY_NONE, KEY_NONE, KEY_NONE);

There are 8 'arguments' to each report:

The first one is the GPIO#, in this case its #0.

Second is the modifier keys, such as Shift, Control, Alt, etc. See hid_keys.pde for a list

of the modifier available. You can 'or' the modifiers. For example, if you want to press

shift and control modifiers at the same time, use MODIFIER_SHIFT_LEFT |

MODIFIER_CONTROL_LEFT

The last 6 are the 6 slots available for concurrent keys. You can have up to 6 key-

codes sent at once (handy for when you want to send complex key reports. Check hid

_keys.pde for the list of all the keycodes!

Remapping the Buttons (Wireless)

The default buttons->keypresses will be satisfactory for most projects. However, you

may want to customize those keys so when a GPIO pin is pulled to ground, a different

keystroke is sent. It isn't that difficult to do!

Bluefruit v1.1 (Oct 22, 2013 or later) supports over-the-air key remapping and also you

can map the pins to mouse movement or mouse clicks

Bluefruit v1.2 (Nov 7 2013 or later) - We have added support for mapping buttons to

some "Consumer Report" keys, also known as Multimedia buttons. You can use the

graphical remapper for the consumer keys.

Over-the-air remapping is suggested since there's no wiring required and you can do

it at any time. You just need to make sure the Bluefruit is paired to your computer. It's

been tested on Mac and Windows but should also work on Linux.

You'll need to install Processing v1.5.1 to run the remapper. ()We suggest 1.5.1, 2.0+

may not work. If v1.5 is giving you problems, though, try v2!

©Adafruit Industries Page 39 of 45

https://processing.org/download/?processing

You will also need to download and install the ControlP5 library:

Download the ControlP5 LIbrary

Then download the zip with the wireless remapper code

GUI EZ-Key Remapper 12/20/2013

Uncompress and open the GUI_EZKey_remapper.pde in Processing.

Make sure the Bluefruit is paired to your computer, since we need to be paired in

order to send it the new keycodes

Select Sketch -> Run or click the play button to start the graphical remapper

You can now select the pins and then using the menus below select what mouse/

keyboard/consumer reports you want. Mouse reports can be X movement, Y

movement, wheel, and three different buttons in any combination. Keyboard reports

can be up to 6 keystroke commands, with modifiers, ascii-type, non-printing, etc.

Consumer reports are special commands, such as volume up, volume down, iPhone

keyboard display/hide and cannot be mixed or combined unlike mouse & Keyboard.

You can also save and load your keymap which is handy for trying out different

mappings!

In Windows, you should use the 32-bit version of Processing!

If you get the error "the function setindex(int) does not exist", try using

Processing version 2.2.1 and ControlP5 version 2.0.4

©Adafruit Industries Page 40 of 45

http://www.sojamo.de/libraries/controlP5/
http://learn.adafruit.com/system/assets/assets/000/013/042/original/GUI_EZKey_remapper_12-20-13.zip?1387568625

When you're done, click SEND_MAP to send it to your Bluefruit. In the main

Processing window you should see the text report indicate that it found a Bluefruit

and also that it sent data with a Checksum Match

"Text style" over-the-air remapper
The original remapper is a Processing sketch that requires editing the reports by

hand. While this is the most powerful, most people may be happier with the graphical

remapper above. Still, for more advanced users, you can edit the reports per button

with more flexibility here.

HID_EZKey_remapper.zip

Uncompress and open the HID_EZKey_remapper.pde in Processing.

Make sure the Bluefruit is paired to your computer, since we need to be paired in

order to send it the new keycodes

Select Sketch -> Run or click the play button

You should see the text report indicate that it found a Bluefruit and also that it sent

data with a Checksum Match

©Adafruit Industries Page 41 of 45

http://learn.adafruit.com/system/assets/assets/000/011/817/original/HID_EZKey_remapper.zip?1382476709

That's it, you can use it immediately with the new keymap!

©Adafruit Industries Page 42 of 45

FAQ

What is the current draw for Bluefruit?

Bluefruit requires ~3VDC, there's an onboard regulator for providing nice clean

power. It draws 25mA at all times while paired and an extra 2mA on average during

transmission

When the module is in Reset mode (Reset tied low) it draws 2-3mA quiescent.

What is the latency ("fly time") for the 12 GPIO buttons?

For Bluefruit v1.0, latency is about 100-120ms. For v1.1 and later (October 22, 2013)

latency is 25-35ms. There is some 'jitter' in the latency but we find its not that

noticeable.

Is it possible to firmware update Bluefruits?

There is no way to re-program or update Bluefruit modules internal firmware - the

key remapping is changing the EEPROM data, not the program storage.

How come the EZ-Key can be sluggish on Android?

There's some issues with Android 4.1 thru 4.4 that cause Bluetooth to act odd due

to WiFi interference. Try turning off WiFi to see if that helps. [check this post for

details! ()]

Downloads

Files

Fritzing object in Adafruit Fritzing library ()

EagleCAD PCB files on GitHub ()

•

•

©Adafruit Industries Page 43 of 45

https://forums.adafruit.com/viewtopic.php?f=22&t=53205&p=269547#p269547
https://forums.adafruit.com/viewtopic.php?f=22&t=53205&p=269547#p269547
https://github.com/adafruit/Fritzing-Library/
https://github.com/adafruit/Adafruit-Bluefruit-EZ-Key-PCB

Schematic

©Adafruit Industries Page 44 of 45

Fabrication Print

©Adafruit Industries Page 45 of 45

	Introducing Bluefruit EZ-Key
	Table of Contents
	Overview
	Pinouts
	Pairing to Bluefruit
	Windows
	Mac
	Linux (e.g. Raspberry Pi)
	User Manual
	Sending Keys/Mouse Via Serial
	Remapping the Buttons (Serial)
	Remapping the Buttons (Wireless)
	FAQ
	Downloads

	Overview
	Pinouts
	Top Row
	Grounds and Vin
	Control and LEDs

	Bottom Row
	Left Port (6-pins)
	Pairing to Bluefruit
	Windows
	Step 0. Install USB adapter
	Step 1. Power the Bluefruit EZ-Key and Press the Pair Button
	Step 2 Pair using Windows Bluetooth services
	Mac
	Step 1. Power the Bluefruit EZ-Key and Press the Pair Button
	Step 2. Pair Using MacOS Bluetooth Service
	Linux (e.g. Raspberry Pi)
	Step 0 Plug in BT Adapter
	Step 1 Update & Install Bluez
	Step 2. Power the Bluefruit EZ-Key and Press the Pair Button
	Step 3. Scan & Connect to Bluefruit Module
	User Manual
	Dimensions in Inches & mm
	Sending Keys/Mouse Via Serial
	Printable character keymap
	Non-printable Characters
	Raw HID Keyboard Reports
	Raw HID Mouse Reports
	Raw HID Consumer Reports
	Testing Sketch (Arduino)
	Remapping the Buttons (Serial)
	Load Processing Sketch
	Customizing Keys
	Remapping the Buttons (Wireless)
	"Text style" over-the-air remapper
	FAQ
	What is the current draw for Bluefruit?
	What is the latency ("fly time") for the 12 GPIO buttons?
	Is it possible to firmware update Bluefruits?
	How come the EZ-Key can be sluggish on Android?

	Downloads
	Files
	Schematic
	Fabrication Print

