
Adafruit RFM69HCW and RFM9X LoRa
Packet Radio Breakouts

Created by lady ada

https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-lora-packet-padio-
breakouts

Last updated on 2024-03-08 02:25:26 PM EST

©Adafruit Industries Page 1 of 83

5

9

12

22

24

37

47

53

Table of Contents

Overview

Pinouts
• Power Pins
• SPI Logic pins:
• Radio GPIO
• Antenna Connection

Assembly
• Prepare the header strip:
• Add the breakout board:
• And Solder!
• Antenna Options
• Wire Antenna
• uFL Connector
• SMA Edge-Mount Connector

Arduino Wiring

Using the RFM69 Radio
• "Raw" vs Packetized
• Arduino Libraries
• RadioHead Library example
• Basic RX & TX example
• Basic Transmitter example code
• Basic receiver example code
• Radio Freq. Config
• Configuring Radio Pinout
• Setup
• Initializing Radio
• Basic Transmission Code
• Basic Receiver Code
• Basic Receiver/Transmitter Demo w/OLED
• Addressed RX and TX Demo

CircuitPython for RFM69
• Design Considerations
• Wiring With Breakout
• Usage with All-In-One Feather M0
• Module Install
• Usage
• Beyond RX & TX

Advanced CircuitPython RFM69 Library Usage
• RadioHead Header
• Node Addressing
• Reliable Datagram

Python Docs for RFM69

©Adafruit Industries Page 2 of 83

53

62

69

69

70

80

82

CircuitPython for RFM9x LoRa
• Design Considerations
• Wiring With Breakout
• Usage with All-In-One Feather M0
• Module Install
• Usage
• Beyond RX & TX

Advanced CircuitPython RFM9x Library Usage
• RadioHead Header
• Node Addressing
• Reliable Datagram
• CRC Checking

Python Docs for RFM9x LoRa

Advanced CircuitPython Library RFM9x/RFM69 - Tweaking Parameters

RFM9X Test
• Arduino Library
• RadioHead RFM9x Library example
• Basic RX & TX example
• Transmitter example code
• Receiver example code
• Radio Pinout
• Frequency
• Setup
• Initializing Radio
• Transmission Code
• Receiver Code

Downloads
• Datasheets & Files
• Schematic
• Fabrication Print

Radio Module F.A.Q.

©Adafruit Industries Page 3 of 83

©Adafruit Industries Page 4 of 83

Overview
"You see, wire telegraph is a kind of a very, very long cat. You pull his tail in New York
and his head is meowing in Los Angeles. Do you understand this? And radio operates
exactly the same way: you send signals here, they receive them there. The only
difference is that there is no cat."

Sending data over long distances is like magic, and now you can be a magician with
this range of powerful and easy-to-use radio modules. Sure, sometimes you want to
talk to a computer (a good time to use WiFi) or perhaps communicate with a Phone
(choose Bluetooth Low Energy!) but what if you want to send data very far? Most WiFi,
Bluetooth, Zigbee and other wireless chipsets use 2.4GHz, which is great for high
speed transfers. If you aren't so concerned about streaming a video, you can use a
lower license-free ISM frequency bands (https://adafru.it/mOE) such as 433MHz in ITU
Europe or 900 MHz in ITU Americas. You can't send data as fast but you can send
data a lot farther.

Also, these packet radios are simpler than WiFi or BLE, you don't have to associate,
pair, scan, or worry about connections. All you do is send data whenever you like, and
any other modules tuned to that same frequency (and, with the same encryption key)
will receive. The receiver can then send a reply back. The modules do packetization,
error correction and can also auto-retransmit so its not like you have to worry about
everything but less power is wasted on maintaining a link or pairing.

These modules are great for use with Arduinos or other microcontrollers, say if you
want a sensor node network or transmit data over a campus or town. The trade-off is

©Adafruit Industries Page 5 of 83

https://en.wikipedia.org/wiki/ISM_band

you need two or more radios, with matching frequencies. WiFi and BT, on the other
hand, are commonly included in computers and phones.

These radio modules come in four variants (two modulation types and two
frequencies) The RFM69's are easiest to work with, and are well known and
understood. The LoRa radios are exciting and more powerful but also more
expensive.

All variants are:

Packet radio with ready-to-go Arduino libraries
Uses the amateur or license-free ISM bands (https://adafru.it/mOE): 433MHz is
ITU "Europe" license-free ISM or ITU "American" amateur with limitations.
900MHz is license free ISM for ITU "Americas"
Use a simple wire antenna or spot for uFL or SMA radio connector

RFM69HCW in either 433 MHz or 868/915MHz

These are +20dBm FSK packet radios that have a lot of nice extras in them such as
encryption and auto-retransmit. They can go about 200-500 meters line-of-sight
using simple wire antennas, probably up to 5Km with well-tuned directional antennas,
perfect line-of-sight, and settings tweakings

SX1231 based module with SPI interface
+13 to +20 dBm up to 100 mW Power Output Capability (power output selectable
in software)

•
•

•

•
•

©Adafruit Industries Page 6 of 83

https://en.wikipedia.org/wiki/ISM_band

50mA (+13 dBm) to 150mA (+20dBm) current draw for transmissions, ~30mA
during active radio listening.
The RFM69 radios have a range of approx. 500 meters line of sight with tuned
uni-directional antennas. Depending on obstructions, frequency, antenna and
power output, you will get lower ranges - especially if you are not line of sight.
Create multipoint networks with individual node addresses
Encrypted packet engine with AES-128

RFM9x LoRa in either 433 MHz or 868/915MHz

These are +20dBm LoRa packet radios that have a special radio modulation that is
not compatible with the RFM69s but can go much much farther. They can easily go 2
Km line of sight using simple wire antennas, or up to 20Km with directional antennas
and settings tweakings

SX1276 LoRa® based module with SPI interface
+5 to +20 dBm up to 100 mW Power Output Capability (power output selectable
in software)
~100mA peak during +20dBm transmit, ~30mA during active radio listening.
The RFM9x radios have a range of approx. 2 km line of sight with tuned uni-
directional antennas. Depending on obstructions, frequency, antenna and power
output, you will get lower ranges - especially if you are not line of sight.

•

•

•
•

•
•

•
•

©Adafruit Industries Page 7 of 83

All radios are sold individually and can only talk to radios of the same part number.
E.g. RFM69 900 MHz can only talk to RFM69 900 MHz, LoRa 433 MHz can only talk to
LoRa 433, etc.

Each radio comes with some header, a 3.3V voltage regulator and levelshifter that can
handle 3-5V DC power and logic so you can use it with 3V or 5V devices. Some
soldering is required to attach the header. You will need to cut and solder on a small
piece of wire (any solid or stranded core is fine) in order to create your antenna.
Optionally you can pick up a uFL or SMA edge-mount connector and attach an
external duck.

©Adafruit Industries Page 8 of 83

Pinouts

Both RFM69 and RFM9x LoRa breakouts have the exact same pinouts. The silkscreen
will say RFM69HCW or LoRa depending on which variant you have. If there's a green
or blue dot on top of the module, its 900 MHz. If there's a red dot, its 433 MHz

Power Pins

©Adafruit Industries Page 9 of 83

The left-most pins are used for power

Vin - power in. This is regulated down to 3.3V so you can use 3.3-6VDC in.
Make sure it can supply 150mA since the peak radio currents can be kinda high
GND - ground for logic and power
EN - connected to the enable pin of the regulator. Pulled high to Vin by default,
pull low to completely cut power to the radio.

SPI Logic pins:

All pins going into the breakout have level shifting circuitry to make them 3-5V logic
level safe. Use whatever logic level is on Vin!

SCK - This is the SPI Clock pin, its an input to the chip
MISO - this is the Microcontroller In Serial Out pin, for data sent from the radio
to your processor, 3.3V logic level
MOSI - this is the Microcontroller Out Serial In pin, for data sent from your
processor to the radio
CS - this is the Chip Select pin, drop it low to start an SPI transaction. Its an input
to the chip
RST - this is the Reset pin for the radio. It's pulled high by default which is reset.
Pull LOW to turn on the radio
G0 - the radio's "GPIO 0" pin, also known as the IRQ pin, used for interrupt
request notification from the radio to the microcontroller, 3.3V logic level

•

•
•

•
•

•

•

•

•

©Adafruit Industries Page 10 of 83

Radio GPIO

The radio's have another 5 GPIO pins that can be used for various notifications or
radio functions. These aren't used for the majority of uses but are available in case
you want them! All are 3.3V logic with no level shifting

Antenna Connection
This three-way connection lets you select which kind of Antenna you'd like, from the
lowest cost wire dipole to the fanciest SMA

©Adafruit Industries Page 11 of 83

Assembly

Prepare the header strip:
Cut the strip to length if necessary. It will
be easier to solder if you insert it into a
breadboard - long pins down

Add the breakout board:
Place the breakout board over the pins so
that the short pins poke through the
breakout pads

©Adafruit Industries Page 12 of 83

https://learn.adafruit.com//assets/31728
https://learn.adafruit.com//assets/31728
https://learn.adafruit.com//assets/31729
https://learn.adafruit.com//assets/31729

And Solder!
Be sure to solder all pins for reliable
electrical contact.

(For tips on soldering, be sure to check out
our Guide to Excellent Soldering (https://
adafru.it/aTk)).

©Adafruit Industries Page 13 of 83

https://learn.adafruit.com//assets/31730
https://learn.adafruit.com//assets/31730
https://learn.adafruit.com//assets/31731
https://learn.adafruit.com//assets/31731
https://learn.adafruit.com//assets/31732
https://learn.adafruit.com//assets/31732
http://learn.adafruit.com/adafruit-guide-excellent-soldering
http://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com//assets/31733
https://learn.adafruit.com//assets/31733

You're done! Check your solder joints
visually and continue onto the next steps

Antenna Options
These radio breakouts do not have a built-in antenna. Instead, you have three options
for attaching an antenna. For most low cost radio nodes, a wire works great. If you
need to put the radio into an enclosure, soldering in uFL and using a uFL to SMA
adapter will let you attach an external antenna. You can also solder an SMA edge-
mount connector directly

Wire Antenna

A wire antenna, aka "quarter wave whip antenna" is low cost and works very well! You
just have to cut the wire down to the right length.

Cut a stranded or solid core wire the the
proper length for the module/frequency

433 MHz - 6.5 inches, or 16.5 cm
868 MHz - 3.25 inches or 8.2 cm
915 MHz - 3 inches or 7.8 cm

©Adafruit Industries Page 14 of 83

https://learn.adafruit.com//assets/31734
https://learn.adafruit.com//assets/31734
https://learn.adafruit.com//assets/31735
https://learn.adafruit.com//assets/31735

Strip a mm or two off the end of the wire,
tin and solder into the ANT pad.

That's pretty much it, you're done!

uFL Connector
If you want an external antenna that is a few inches away from the radio, you need to
do a tiny bit more work but its not too difficult.

You'll need to get an SMT uFL connector, these are fairly standard (http://adafru.it/
1661)

©Adafruit Industries Page 15 of 83

https://learn.adafruit.com//assets/31736
https://learn.adafruit.com//assets/31736
https://learn.adafruit.com//assets/31739
https://learn.adafruit.com//assets/31739
https://learn.adafruit.com//assets/31738
https://learn.adafruit.com//assets/31738
https://www.adafruit.com/products/1661

uFL SMT Antenna Connector
uFL connectors are very small surface-
mount parts used when an external RF
antena is desired but a big bulky SMA
connector takes up too much space. We
use this part on our GPS and WiFi...
https://www.adafruit.com/product/1661

You'll also need a uFL to SMA adapter (http://adafru.it/851) (or whatever adapter you
need for the antenna you'll be using, SMA is the most common

SMA to uFL/u.FL/IPX/IPEX RF Adapter
Cable
This RF adapter cable is super handy for
anyone doing RF work. Often times, small
electronics save space by having a pick-
and-placeable u.FL connector (also called
uFL, IPEX, IPAX,...
https://www.adafruit.com/product/851

Of course, you will also need an antenna of some sort, that matches your radio
frequency

Check the bottom of the uFL connector,
note that there's two large side pads
(ground) and a little inlet pad. The other
small pad is not used!

uFL connectors are rated for 30 connection cycles, but be careful when
connecting/disconnecting to not rip the pads off the PCB. Once a uFL/SMA
adapter is connected, use strain relief!

©Adafruit Industries Page 16 of 83

https://www.adafruit.com/product/1661
https://www.adafruit.com/product/1661
https://www.adafruit.com/products/851
https://www.adafruit.com/product/851
https://www.adafruit.com/product/851
https://www.adafruit.com/product/851
https://learn.adafruit.com//assets/31746
https://learn.adafruit.com//assets/31746

Put down a touch of solder on the signal
pad

Solder in the first pad while holding the
uFL steady

©Adafruit Industries Page 17 of 83

https://learn.adafruit.com//assets/31747
https://learn.adafruit.com//assets/31747
https://learn.adafruit.com//assets/31749
https://learn.adafruit.com//assets/31749

Solder in the two side pads, they are used
for signal and mechanical connectivity so
make sure there's plenty of solder

Once done, check your work visually

©Adafruit Industries Page 18 of 83

https://learn.adafruit.com//assets/31750
https://learn.adafruit.com//assets/31750
https://learn.adafruit.com//assets/31751
https://learn.adafruit.com//assets/31751
https://learn.adafruit.com//assets/31752
https://learn.adafruit.com//assets/31752

Once done attach your uFL adapter and
antenna!

SMA Edge-Mount Connector
OK so

You'll need an SMA (or, if you need RP-
SMA for some reason) Edge-Mount
connector with 1.6mm spacing

The SMA connector 'slides on' the top of
the PCB

©Adafruit Industries Page 19 of 83

https://learn.adafruit.com//assets/31753
https://learn.adafruit.com//assets/31753
https://learn.adafruit.com//assets/31754
https://learn.adafruit.com//assets/31754
https://learn.adafruit.com//assets/31755
https://learn.adafruit.com//assets/31755

Once lined up, solder the center contact
first

Solder in the two side ground pads. Note
you will need a lot of heat for this, because
the connector is an excellent heat sink and
its got a huge ground plane

©Adafruit Industries Page 20 of 83

https://learn.adafruit.com//assets/31756
https://learn.adafruit.com//assets/31756
https://learn.adafruit.com//assets/31757
https://learn.adafruit.com//assets/31757
https://learn.adafruit.com//assets/31758
https://learn.adafruit.com//assets/31758

Flip over and also do the other side
ground/mechanical contacts

©Adafruit Industries Page 21 of 83

https://learn.adafruit.com//assets/31760
https://learn.adafruit.com//assets/31760
https://learn.adafruit.com//assets/31761
https://learn.adafruit.com//assets/31761

Attach on your antenna, you're done!

Arduino Wiring

rfm69.fzz
https://adafru.it/vhb

©Adafruit Industries Page 22 of 83

https://learn.adafruit.com//assets/31762
https://learn.adafruit.com//assets/31762
https://learn.adafruit.com//assets/31763
https://learn.adafruit.com//assets/31763
https://cdn-learn.adafruit.com/assets/assets/000/040/616/original/rfm69.fzz?1491192532

Wiring up the radio in SPI mode is pretty easy as there's not that many pins! The
library requires hardware SPI and does not have software SPI support so you must
use the hardware SPI port! Start by connecting the power pins

Vin connects to the Arduino 5V pin. If you're using a 3.3V Arduino, connect to
3.3V
GND connects to Arduino ground
SCLK connects to SPI clock. On Arduino Uno/Duemilanove/328-based, thats
Digital 13. On Mega's, its Digital 52 and on Leonardo/Due its ICSP-3 (See SPI
Connections for more details (https://adafru.it/d5h))
MISO connects to SPI MISO. On Arduino Uno/Duemilanove/328-based, thats
Digital 12. On Mega's, its Digital 50 and on Leonardo/Due its ICSP-1 (See SPI
Connections for more details (https://adafru.it/d5h))
MOSI connects to SPI MOSI. On Arduino Uno/Duemilanove/328-based, thats
Digital 11. On Mega's, its Digital 51 and on Leonardo/Due its ICSP-4 (See SPI
Connections for more details (https://adafru.it/d5h))
CS connects to our SPI Chip Select pin. We'll be using Digital 4 but you can later
change this to any pin
RST connects to our radio reset pin. We'll be using Digital 2 but you can later
change this pin too.
G0 (IRQ) connects to an interrupt-capable pin. We'll be using Digital 3 but you
can later change this pin too. However, it must connect a hardware Interrupt
pin. Not all pins can do this! Check the board documentation for which pins are
hardware interrupts, you'll also need the hardware interrupt number. For
example, on UNO digital 3 is interrupt #1

•

•
•

•

•

•

•

•

©Adafruit Industries Page 23 of 83

http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI

Using the RFM69 Radio

This page is shared between the RFM69
breakout and the all-in-one Feather
RFM69's. The example code and overall
functionality is the same, only the pinouts
used may differ! Just make sure the
example code is using the pins you have
wired up.

Before beginning make sure you have your Arduino or Feather working smoothly, it
will make this part a lot easier. Once you have the basic functionality going - you can
upload code, blink an LED, use the serial output, etc. you can then upgrade to using
the radio itself.

Note that the sub-GHz radio is not designed for streaming audio or video! It's best
used for small packets of data. The data rate is adjustable but its common to stick to
around 19.2 Kbps (thats bits per second). Lower data rates will be more successful in
their transmissions

You will, of course, need at least two paired radios to do any testing! The radios must
be matched in frequency (e.g. two 900 MHz radios are ok, but mixing 900 MHz and
433 MHz is not). They also must use the same encoding schemes, you cannot have a
900 MHz RFM69 packet radio talk to a 900 MHz RFM9x LoRa radio.

©Adafruit Industries Page 24 of 83

https://learn.adafruit.com//assets/40611
https://learn.adafruit.com//assets/40611
https://learn.adafruit.com//assets/40612
https://learn.adafruit.com//assets/40612

"Raw" vs Packetized
The SX1231 can be used in a 'raw rx/tx' mode where it just modulates incoming bits
from pin #2 and sends them on the radio, however there's no error correction or
addressing so we wont be covering that technique.

Instead, 99% of cases are best off using packetized mode. This means you can set up
a recipient for your data, error correction so you can be sure the whole data set was
transmitted correctly, automatic re-transmit retries and return-receipt when the packet
was delivered. Basically, you get the transparency of a data pipe without the
annoyances of radio transmission unreliability

Arduino Libraries
These radios have really great libraries already written, so rather than coming up with
a new standard we suggest using existing libraries such as LowPowerLab's RFM69
Library (https://adafru.it/mCz) and AirSpayce's Radiohead library (https://adafru.it/mCA)
which also suppors a vast number of other radios

These are really great Arduino Libraries, so please support both companies in thanks
for their efforts!

We recommend using the Radiohead library - it is very cross-platform friendly and
used a lot in the community!

RadioHead Library example

To begin talking to the radio, you will need to download our fork of the Radiohead
library from our github repository (https://adafru.it/vgE). You can do that by visiting the
github repo and manually downloading or, easier, just click this button to download
the zip:

Download RadioHead Library
https://adafru.it/vgF

Rename the uncompressed folder RadioHead and check that the RadioHead folder
contains files like RH_RF69.cpp and RH_RF69.h (and many others!)

Place the RadioHead library folder in your arduinosketchfolder/libraries/ folder.

©Adafruit Industries Page 25 of 83

https://github.com/LowPowerLab/RFM69
https://github.com/LowPowerLab/RFM69
http://www.airspayce.com/mikem/arduino/RadioHead/
https://github.com/adafruit/RadioHead
https://github.com/adafruit/RadioHead
https://github.com/adafruit/RadioHead/archive/master.zip

You may need to create the libraries subfolder if it's your first library. Restart the IDE.

We also have a great tutorial on Arduino library installation at:
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://
adafru.it/aYM)

Basic RX & TX example
Lets get a basic demo going, where one radio transmits and the other receives. We'll
start by setting up the transmitter

Basic Transmitter example code

This code will send a small packet of data once a second to another RFM69 radio,
without any addressing.

Open up the example RadioHead→feather→RadioHead69_RawDemo_TX

Load this code into your Transmitter Arduino or Feather!

Before uploading, check for the #define RF69_FREQ line and edit if necessary to
match the frequency of the radio hardware you're using.

These examples are optimized for the Feather 32u4/M0/RP2040. If you're using
differnet wiring (e.g. radio breakout board), uncomment/comment/edit the
sections defining the pins depending on which chipset and wiring you are using!
The pins used will vary depending on your setup!

©Adafruit Industries Page 26 of 83

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

Once uploaded you should see the following on the serial console

Now open up another instance of the Arduino IDE - this is so you can see the serial
console output from the TX device while you set up the RX device.

Basic receiver example code

This code will receive and reply with a small packet of data.

Open up the example RadioHead→feather→RadioHead69_RawDemo_RX

Load this code into your Receiver Arduino/Feather!

©Adafruit Industries Page 27 of 83

Now open up the Serial console on the receiver, while also checking in on the
transmitter's serial console. You should see the receiver is...well, receiving packets

And, on the transmitter side, it is now printing Got Reply after each transmisssion
because it got a reply from the receiver

Before uploading, check for the #define RF69_FREQ line and edit if necessary to
match the frequency of the radio hardware you're using.

These examples are optimized for the Feather 32u4/M0/RP2040. If you're using
differnet wiring (e.g. radio breakout board), uncomment/comment/edit the
sections defining the pins depending on which chipset and wiring you are using!
The pins used will vary depending on your setup!

©Adafruit Industries Page 28 of 83

That's pretty much the basics of it! Lets take a look at the examples so you know how
to adapt to your own radio network

Radio Freq. Config

Each radio has a frequency that is configurable in software. You can actually tune
outside the recommended frequency, but the range won't be good. 900 MHz can be
tuned from about 850-950MHz with good performance. 433 MHz radios can be tuned
from 400-460 MHz or so.

// Change to 434.0 or other frequency, must match RX's freq!
#define RF69_FREQ 915.0

For all radios they will need to be on the same frequency. If you have a 433MHz radio
you will want to stick to 433. If you have a 900 Mhz radio, go with 868 or 915MHz, just
make sure all radios are on the same frequency.

Configuring Radio Pinout

At the top of the sketch you can also set the pinout. The radios will use hardware SPI,
but you can select any pins for RFM69_CS (an output), RFM_IRQ (an input) and
RFM_RST (an output). RFM_RST is manually used to reset the radio at the beginning

©Adafruit Industries Page 29 of 83

of the sketch. RFM_IRQ must be an interrupt-capable pin. Check your board to
determine which pins you can use!

Also, an LED is defined.

For example, here is the Feather 32u4 pinout:

#if defined (__AVR_ATmega32U4__) // Feather 32u4 w/Radio
#define RFM69_CS 8
#define RFM69_INT 7
#define RFM69_RST 4
#define LED 13

If you're using a Feather M0, the pinout is slightly different:

#elif defined(ADAFRUIT_FEATHER_M0) || defined(ADAFRUIT_FEATHER_M0_EXPRESS) ||
defined(ARDUINO_SAMD_FEATHER_M0) // Feather M0 w/Radio

#define RFM69_CS 8
#define RFM69_INT 3
#define RFM69_RST 4
#define LED 13

And for Feather RP2040:

#elif defined(ARDUINO_ADAFRUIT_FEATHER_RP2040_RFM) // Feather RP2040 w/Radio
#define RFM69_CS 16
#define RFM69_INT 21
#define RFM69_RST 17
#define LED LED_BUILTIN

If you're using an Arduino UNO or compatible, we recommend:

#elif defined (__AVR_ATmega328P__) // Feather 328P w/wing
#define RFM69_CS 4 //
#define RFM69_INT 3 //
#define RFM69_RST 2 // "A"
#define LED 13

If you're using a FeatherWing or different setup, you'll have to set up the #define
statements to match your wiring

You can then instantiate the radio object with our custom pin numbers. Note that the
IRQ is defined by the IRQ pin not number (sometimes they differ).

// Singleton instance of the radio driver
RH_RF69 rf69(RFM69_CS, RFM69_INT);

©Adafruit Industries Page 30 of 83

Setup

We begin by setting up the serial console and hard-resetting the RFM69

void setup()
{
 Serial.begin(115200);
 //while (!Serial) { delay(1); } // wait until serial console is open, remove if
not tethered to computer

 pinMode(LED, OUTPUT);
 pinMode(RFM69_RST, OUTPUT);
 digitalWrite(RFM69_RST, LOW);

 Serial.println("Feather RFM69 RX Test!");
 Serial.println();

 // manual reset
 digitalWrite(RFM69_RST, HIGH);
 delay(10);
 digitalWrite(RFM69_RST, LOW);
 delay(10);

If you are using a board with 'native USB' make sure the while (!Serial) line is
commented out if you are not tethering to a computer, as it will cause the
microcontroller to halt until a USB connection is made!

Initializing Radio

Once initialized, you can set up the frequency, transmission power, radio type and
encryption key.

For the frequency, we set it already at the top of the sketch

For transmission power you can select from 14 to 20 dBi. Lower numbers use less
power, but have less range. The second argument to the function is whether it is an
HCW type radio, with extra amplifier. This should always be set to true!

Finally, if you are encrypting data transmission, set up the encryption key

 if (!rf69.init()) {
 Serial.println("RFM69 radio init failed");
 while (1);
 }
 Serial.println("RFM69 radio init OK!");

 // Defaults after init are 434.0MHz, modulation GFSK_Rb250Fd250, +13dbM (for low
power module)
 // No encryption
 if (!rf69.setFrequency(RF69_FREQ)) {
 Serial.println("setFrequency failed");
 }

©Adafruit Industries Page 31 of 83

 // If you are using a high power RF69 eg RFM69HW, you *must* set a Tx power with
the
 // ishighpowermodule flag set like this:
 rf69.setTxPower(20, true); // range from 14-20 for power, 2nd arg must be true
for 69HCW

 // The encryption key has to be the same as the one in the server
 uint8_t key[] = { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08};
 rf69.setEncryptionKey(key);

Basic Transmission Code

If you are using the transmitter, this code will wait 1 second, then transmit a packet
with "Hello World #" and an incrementing packet number, then check for a reply

void loop() {
 delay(1000); // Wait 1 second between transmits, could also 'sleep' here!

 char radiopacket[20] = "Hello World #";
 itoa(packetnum++, radiopacket+13, 10);
 Serial.print("Sending "); Serial.println(radiopacket);

 // Send a message!
 rf69.send((uint8_t *)radiopacket, strlen(radiopacket));
 rf69.waitPacketSent();

 // Now wait for a reply
 uint8_t buf[RH_RF69_MAX_MESSAGE_LEN];
 uint8_t len = sizeof(buf);

 if (rf69.waitAvailableTimeout(500)) {
 // Should be a reply message for us now
 if (rf69.recv(buf, &len)) {
 Serial.print("Got a reply: ");
 Serial.println((char*)buf);
 Blink(LED, 50, 3); //blink LED 3 times, 50ms between blinks
 } else {
 Serial.println("Receive failed");
 }
 } else {
 Serial.println("No reply, is another RFM69 listening?");
 }
}

Its pretty simple, the delay does the waiting, you can replace that with low power
sleep code. Then it generates the packet and appends a number that increases every
tx. Then it simply calls send() waitPacketSent() to wait until is is done
transmitting.

It will then wait up to 500 milliseconds for a reply from the receiver with
waitAvailableTimeout(500) . If there is a reply, it will print it out. If not, it will
complain nothing was received. Either way the transmitter will continue the loop and
sleep for a second until the next TX.

©Adafruit Industries Page 32 of 83

Basic Receiver Code

The Receiver has the same exact setup code, but the loop is different

void loop() {
 if (rf69.available()) {
 // Should be a message for us now
 uint8_t buf[RH_RF69_MAX_MESSAGE_LEN];
 uint8_t len = sizeof(buf);
 if (rf69.recv(buf, &len)) {
 if (!len) return;
 buf[len] = 0;
 Serial.print("Received [");
 Serial.print(len);
 Serial.print("]: ");
 Serial.println((char*)buf);
 Serial.print("RSSI: ");
 Serial.println(rf69.lastRssi(), DEC);

 if (strstr((char *)buf, "Hello World")) {
 // Send a reply!
 uint8_t data[] = "And hello back to you";
 rf69.send(data, sizeof(data));
 rf69.waitPacketSent();
 Serial.println("Sent a reply");
 Blink(LED, 40, 3); //blink LED 3 times, 40ms between blinks
 }
 } else {
 Serial.println("Receive failed");
 }
 }
}

Instead of transmitting, it is constantly checking if there's any data packets that have
been received. available() will return true if a packet with the proper encryption
has been received. If so, the receiver prints it out.

It also prints out the RSSI which is the receiver signal strength indicator. This number
will range from about -15 to -80. The larger the number (-15 being the highest you'll
likely see) the stronger the signal.

If the data contains the text "Hello World" it will also reply to the packet.

Once done it will continue waiting for a new packet

Basic Receiver/Transmitter Demo w/OLED
OK once you have that going you can try this example,
RadioHead69_RawDemoTXRX_OLED. We're using the Feather with an OLED wing
but in theory you can run the code without the OLED and connect three buttons to
GPIO #9, 6, and 5 on the Feathers. Upload the same code to each Feather. When you

©Adafruit Industries Page 33 of 83

press buttons on one Feather they will be printed out on the other one, and vice
versa. Very handy for testing bi-directional communication!

This demo code shows how you can listen for packets and also check for button
presses (or sensor data or whatever you like) and send them back and forth between
the two radios!

Addressed RX and TX Demo
OK so the basic demo is well and good but you have to do a lot of management of the
connection to make sure packets were received. Instead of manually sending
acknowledgements, you can have the RFM69 and library do it for you! Thus the
Reliable Datagram part of the RadioHead library.

Load up the RadioHead69_AddrDemo_RX and RadioHead69_AddrDemo_TX
sketches to each of your boards

This example lets you have many 'client' RFM69's all sending data to one 'server'

Each client can have its own address set, as well as the server address. See this code
at the beginning:

// Who am i? (server address)
#define MY_ADDRESS 1

// Where to send packets to! MY_ADDRESS in client (RX) should match this.
#define DEST_ADDRESS 2

Remember to check the frequency set in the example, and that the pinouts match
your wiring!

©Adafruit Industries Page 34 of 83

For each client, have a unique MY_ADDRESS. Then pick one server that will be
address #1

Once you upload the code to a client, you'll see the following in the serial console:

Because the data is being sent to address #1, but #1 is not acknowledging that data.

If you have the server running, with no clients, it will sit quietly:

Turn on the client and you'll see acknowledged packets!

©Adafruit Industries Page 35 of 83

And the server is also pretty happy

The secret sauce is the addition of this new object:

// Class to manage message delivery and receipt, using the driver declared above
RHReliableDatagram rf69_manager(rf69, MY_ADDRESS);

Which as you can see, is the manager for the RFM69. In setup() you'll need to init it,
although you still configure the underlying rfm69 like before:

 if (!rf69_manager.init()) {
 Serial.println("RFM69 radio init failed");
 while (1);
 }

And when transmitting, use sendToWait which will wait for an ack from the recepient
(at DEST_ADDRESS)

©Adafruit Industries Page 36 of 83

 if (rf69_manager.sendtoWait((uint8_t *)radiopacket, strlen(radiopacket),
DEST_ADDRESS)) {

on the 'other side' use the recvFromAck which will receive and acknowledge a packet

 // Wait for a message addressed to us from the client
 uint8_t len = sizeof(buf);
 uint8_t from;
 if (rf69_manager.recvfromAck(buf, &len, &from)) {

That function will wait forever. If you'd like to timeout while waiting for a packet, use
recvfromAckTimeout which will wait an indicated # of milliseconds

if (rf69_manager.recvfromAckTimeout(buf, &len, 2000, &from))

CircuitPython for RFM69
It's easy to use the RFM69HCW radio with CircuitPython and the Adafruit
CircuitPython RFM69 (https://adafru.it/BjE) module. This module allows you to easily
write Python code that sends and receives packets of data with the radio. Be careful
to note this library is for the RFM69 radio only and will not work with the RFM9X LoRa
radios!

Design Considerations

One thing to be aware of before you use the RFM69 series of radios with
CircuitPython are some of the limitations and design considerations for its module.
 Keep these in mind as you think about projects using the RFM69 and CircuitPython:

You can only send and receive packets up to 60 bytes in length at a time. The
size of the radio's internal buffer dictates this limit so if you want to send longer
messages you'll need to break them into a series of smaller send calls in your
application code.
Receiving packets is a 'best effort' in pure Python code. Unlike the Arduino
versions of the RFM69 library there is no interrupt support which means when a
packet is received it must be immediately processed by the Python code or it
could be lost. For your application it will work best to only receive small, single
packet messages at a time. Don't try to receive kilobytes of data or else you'll
lose packets. This module is really intended for simple single packet messages
like 'ON', 'OFF', etc.
Sending and receiving packets will 'block' your Python code until the packet is
fully processed. This means you can't do a lot of other things while sending and

•

•

•

©Adafruit Industries Page 37 of 83

https://github.com/adafruit/Adafruit_CircuitPython_RFM69
https://github.com/adafruit/Adafruit_CircuitPython_RFM69

waiting for packets to be received. Design your application so the radio usage
is the primary scenario and very little other tasks need to happen in the
background.
The module is written to be compatible with the RadioHead RFM69 Arduino
library. This means by default the module will setup the radio with the same
GFSK, 250kbit/s, 250khz deviation, and bit whitening radio configuration so it
can send and receive data with itself and other RadioHead-driven modules. In
addition the CircuitPython module uses the same sync word and packet
preamble (4 bytes) as RadioHead. If you want to use different modulations or
settings you'll need to configure the radio yourself (see the initialization
code (https://adafru.it/BjF) for the registers and bits to access, however you will
need to consult the datasheet for the necessary values).
You can enable encryption and set an AES encryption key.
The CircuitPython module supports advanced RadioHead features like node
addressing and "reliable DataGram". "Reliable DataGram" mode in CircuitPython
has some additional parameters to control timing that are not available with the
RadioHead library. It may be difficult to get reliable transmission to work
between the RadioHead library and CircuitPython.

Wiring With Breakout

First wire up a RFM69 breakout to your board as shown on the previous pages for
Arduino. Note that the G0/interrupt line is not used by the CircuitPython module and
can remain unconnected. Here's an example of wiring a Feather M0 to the radio with
a SPI connection:

•

•
•

©Adafruit Industries Page 38 of 83

https://github.com/adafruit/Adafruit_CircuitPython_RFM69/blob/master/adafruit_rfm69.py#L299-L318
https://github.com/adafruit/Adafruit_CircuitPython_RFM69/blob/master/adafruit_rfm69.py#L299-L318

Board 3V to radio VIN
Board GND to radio GND
Board SCK to radio SCK
Board MOSI to radio MOSI
Board MISO to radio MISO
Board D5 to radio CS (or any other digital I/O pin)
Board D6 to radio RST (or any other digital I/O pin)

Usage with All-In-One Feather M0

Alternatively you can use the Feather M0 RFM69 board but be sure you've loaded the
adafruit-circuitpython-feather_m0_rfm69-*.bin (https://adafru.it/tBa) version of
CircuitPython on your board! This is very important as the RFM69 build has special
pins added to the board module which are used to access the radio's control lines!

For details on how to load a binary circuitpython build, check out our Non-UF2-Install
guide (https://adafru.it/Bed)

•
•
•
•
•
•
•

©Adafruit Industries Page 39 of 83

https://github.com/adafruit/circuitpython/releases
file:///home/welcome-to-circuitpython/non-uf2-installation
file:///home/welcome-to-circuitpython/non-uf2-installation

Adafruit Feather M0 RFM69HCW Packet
Radio - 868 or 915 MHz
This is the Adafruit Feather M0 RFM69
Packet Radio (868 or 915 MHz). We call
these RadioFruits, our take on an...
https://www.adafruit.com/product/3176

Adafruit Feather M0 RFM69HCW Packet
Radio - 433MHz
This is the Adafruit Feather M0 RFM69
Packet Radio (433 MHz). We call these
RadioFruits, our take on an...
https://www.adafruit.com/product/3177

Module Install

If you have the Feather M0 RFM69 and have installed CircuitPython 6.0 or later, it is
not necessary to install the library modules. They are "frozen into" the Circuitpython
build. Skip to the "Usage" section below.

If you are using an older version of CircuitPython you will need to install the modules
as described.

Next you'll need to install the Adafruit CircuitPython RFM69 (https://adafru.it/
BjE) module on your CircuitPython board. Before you do that make sure you are
running the latest version of Adafruit CircuitPython (https://adafru.it/Amd) for your
board too (again be sure to the load the Feather M0 RFM69 version if you're using
that board and want to use its built-in radio module).

Next you'll need to install the necessary libraries to use the hardware--carefully follow
the steps to find and install these libraries from Adafruit's CircuitPython library
bundle (https://adafru.it/zdx). Our introduction guide has a great page on how to
install the library bundle (https://adafru.it/ABU) for both express and non-express
boards.

©Adafruit Industries Page 40 of 83

https://www.adafruit.com/product/3176
https://www.adafruit.com/product/3176
https://www.adafruit.com/product/3176
https://www.adafruit.com/product/3177
https://www.adafruit.com/product/3177
https://www.adafruit.com/product/3177
https://github.com/adafruit/Adafruit_CircuitPython_RFM69
file:///home/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
file:///home/welcome-to-circuitpython/circuitpython-libraries
file:///home/welcome-to-circuitpython/circuitpython-libraries

Remember for non-express boards like the Adafruit Feather M0, you'll need to
manually install the necessary libraries from the bundle:

adafruit_rfm69.mpy
adafruit_bus_device

You can also download the adafruit_rfm69.mpy from its releases page on
Github (https://adafru.it/Bl2).

Before continuing make sure your board's lib folder or root filesystem has
the adafruit_rfm69.mpy, and adafruit_bus_device files and folders copied over.

Usage
To demonstrate the usage of the radio we'll initialize it and send and receive data
from the board's Python REPL.

Connect to the board's serial REPL (https://adafru.it/Awz)so you are at the
CircuitPython >>> prompt.

Run the following code to import the necessary modules and initialize the
SPI connection with the sensor:

import board
import busio
import digitalio
spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)

Now define a few of the pins connected to the RFM69, specifically the CS and RST
pins:

cs = digitalio.DigitalInOut(board.D5)
reset = digitalio.DigitalInOut(board.D6)

However if you're using the Feather M0 RFM69 board with a built-in RFM69 radio
(and you've loaded the special version of CircuitPython just for this board as
mentioned above), you instead want to use these pins for the CS and RST lines:

cs = digitalio.DigitalInOut(board.RFM69_CS)
reset = digitalio.DigitalInOut(board.RFM69_RST)

•
•

©Adafruit Industries Page 41 of 83

https://github.com/adafruit/Adafruit_CircuitPython_RFM69/releases
https://github.com/adafruit/Adafruit_CircuitPython_RFM69/releases
file:///home/welcome-to-circuitpython/the-repl

You're ready to import the RFM69 module and create an instance of the RFM69 class
inside it. Before you create the radio module instance you'll need to check if you're
using a 433mhz or 915mhz radio module as the initializer requires the frequency to be
specified--confirm which frequency your module uses and run one of the following
lines.

For a 915mhz radio use:

import adafruit_rfm69
rfm69 = adafruit_rfm69.RFM69(spi, cs, reset, 915.0)

Or for a 433mhz radio use:

import adafruit_rfm69
rfm69 = adafruit_rfm69.RFM69(spi, cs, reset, 433.0)

Notice the initializer takes the following required parameters:

spi - The SPI bus connected to the board.
cs - The DigitalInOut instance connected to the CS line of the radio.
reset - The DigitalInOut instance connected to the RST or reset line of the radio.
frequency - The frequency in megahertz of the radio module. Remember this
frequency depends on which type of radio you're using and the frequency you
desire to use!

In addition there are some optional parameters you might specify:

baudrate - The baud rate to use for the SPI connection to the radio. By default
this is 10mhz which is as fast as the radio can handle, but in some cases it might
be too fast if you're wiring up a breakout to a breadboard (breadboards can be
notorious for not working well with high speed signals). If you run into odd
errors like being unable to find the RFM69 radio try lowering the baudrate by
specifying a baudrate=1000000 keyword (which sets the speed to a lower 1mhz
value).

Once the RFM69 class is created and initialized you're ready to start sending and
receiving data.

Remember by default the module will be configured to interface with the "RadioHead"
RFM69 setup so you can also send and receive packets with an Arduino running the
'raw' TX/RX examples!

•
•
•
•

•

©Adafruit Industries Page 42 of 83

To send a message simply call the send function and provide a string or byte string of
data:

rfm69.send('Hello world!')

Remember you can only send a message up to 60 bytes in length at a time!
Attempting to send a message longer than 60 bytes will fail with an exception error. If
you need to send a longer message it will have to be broken up into multiple send
calls and reconstructed on the receiving side.

If you have another RFM69 on the same frequency and modulation waiting to receive
messages (like another CircuitPython module running receive code below) you should
see it receive the message.

You can even have an Arduino running the RadioHead library's raw RX example see
the message that was sent (be sure this receiving side has an encryption key setup
exactly the same way as the sending side, see the encryption_key property
discussion further below):

To receive a message simply call the receive function. This function will wait for
half a second for any packet to be received. If a packet is found it will be returned as
a byte string (remember packets are at most 60 bytes long), or if no packet was found
a result of None is returned.

rfm69.receive()

©Adafruit Industries Page 43 of 83

You can increase the amount of time the module waits for a packet to be received by
specifying the time in seconds as a parameter to the receive call:

rfm69.receive(timeout=5.0) # Wait 5 seconds instead of 0.5 seconds.

Notice this waits longer at the REPL for a packet to be received before returning. If
you have another RFM69 setup try having it send a message while the other is
waiting to receive it. You should see a byte string returned. You can also have an
Arduino running the RadioHead library's raw TX example send messages that are
received by your code (again it must be setup with the same encryption key):

One thing to note in Python byte strings aren't exactly like text strings and you might
not be able to do all the text processing (like find, replace, etc.) as you expect.
 However you can convert a byte string into text by assuming a specific text encoding
like ASCII. For example to receive a packet and convert the contents to an ASCII text
string you can run code like:

packet = rfm69.receive() # Wait for a packet to be received (up to 0.5 seconds)
if packet is not None:
 packet_text = str(packet, 'ascii')
 print('Received: {0}'.format(packet_text))

Notice this code first receives a packet, then checks if one was actually found (the
packet is not None check--if no packet is received a value of None is returned), and
then converts the packet data to a string assuming an ASCII text encoding.

©Adafruit Industries Page 44 of 83

Beyond RX & TX
Beyond basic sending and receiving there are a few properties of the RFM69 class
you might want to interact with:

encryption_key - This is an optional 16 byte string that defines the AES
encryption key used by the radio for sending and receiving packets. Both the
sending and receiving code must have the exact same encryption key set or
they'll be unable to see each other's packets! See the simpletest.py
example (https://adafru.it/Bl3) below for an example of setting the
encryption_key to match the default key from RadioHead library raw
examples. By default the RFM69 class assumes no encryption key is set, and
you can set this property to the value None to disable encryption.
rssi - The received signal strength indicator is a property you can read to see
the strength of the radio signal being received. This is updated when packets
are received and returns a value in decibels (typically negative, so the smaller
the number and closer to 0, the higher the strength / better the signal).

That's all there is to the basic RFM69 radio usage! Remember the CircuitPython
module is designed for sending and receiving small up to 60 byte control messages
and not large or high bandwidth amounts of data.

Here's a complete example of sending a message and waiting to receive and print
any received messages. Save this as main.py on your board and open the serial
REPL to see it print data and any received messages. If you have two boards and
radios setup to run this code at the same time they'll send each other a message on
start up!

SPDX-FileCopyrightText: 2018 Tony DiCola for Adafruit Industries
SPDX-License-Identifier: MIT

Simple example to send a message and then wait indefinitely for messages
to be received. This uses the default RadioHead compatible GFSK_Rb250_Fd250
modulation and packet format for the radio.
import board
import busio
import digitalio

import adafruit_rfm69

•

•

©Adafruit Industries Page 45 of 83

https://github.com/adafruit/Adafruit_CircuitPython_RFM69/blob/master/examples/rfm69_simpletest.py
https://github.com/adafruit/Adafruit_CircuitPython_RFM69/blob/master/examples/rfm69_simpletest.py

Define radio parameters.
RADIO_FREQ_MHZ = 915.0 # Frequency of the radio in Mhz. Must match your
module! Can be a value like 915.0, 433.0, etc.

Define pins connected to the chip, use these if wiring up the breakout according
to the guide:
CS = digitalio.DigitalInOut(board.D5)
RESET = digitalio.DigitalInOut(board.D6)
Or uncomment and instead use these if using a Feather M0 RFM69 board
and the appropriate CircuitPython build:
CS = digitalio.DigitalInOut(board.RFM69_CS)
RESET = digitalio.DigitalInOut(board.RFM69_RST)

Define the onboard LED
LED = digitalio.DigitalInOut(board.D13)
LED.direction = digitalio.Direction.OUTPUT

Initialize SPI bus.
spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)

Initialze RFM radio
rfm69 = adafruit_rfm69.RFM69(spi, CS, RESET, RADIO_FREQ_MHZ)

Optionally set an encryption key (16 byte AES key). MUST match both
on the transmitter and receiver (or be set to None to disable/the default).
rfm69.encryption_key = (

b"\x01\x02\x03\x04\x05\x06\x07\x08\x01\x02\x03\x04\x05\x06\x07\x08"
)

Print out some chip state:
print("Temperature: {0}C".format(rfm69.temperature))
print("Frequency: {0}mhz".format(rfm69.frequency_mhz))
print("Bit rate: {0}kbit/s".format(rfm69.bitrate / 1000))
print("Frequency deviation: {0}hz".format(rfm69.frequency_deviation))

Send a packet. Note you can only send a packet up to 60 bytes in length.
This is a limitation of the radio packet size, so if you need to send larger
amounts of data you will need to break it into smaller send calls. Each send
call will wait for the previous one to finish before continuing.
rfm69.send(bytes("Hello world!\r\n", "utf-8"))
print("Sent hello world message!")

Wait to receive packets. Note that this library can't receive data at a fast
rate, in fact it can only receive and process one 60 byte packet at a time.
This means you should only use this for low bandwidth scenarios, like sending
and receiving a single message at a time.
print("Waiting for packets...")
while True:

packet = rfm69.receive()
Optionally change the receive timeout from its default of 0.5 seconds:
packet = rfm69.receive(timeout=5.0)
If no packet was received during the timeout then None is returned.
if packet is None:

Packet has not been received
LED.value = False
print("Received nothing! Listening again...")

else:
Received a packet!
LED.value = True
Print out the raw bytes of the packet:
print("Received (raw bytes): {0}".format(packet))
And decode to ASCII text and print it too. Note that you always
receive raw bytes and need to convert to a text format like ASCII
if you intend to do string processing on your data. Make sure the
sending side is sending ASCII data before you try to decode!
packet_text = str(packet, "ascii")
print("Received (ASCII): {0}".format(packet_text))

©Adafruit Industries Page 46 of 83

Advanced CircuitPython RFM69 Library
Usage
RadioHead Header

Every packet transmitted via the CircuitPython RFM9x Library contains a 4 byte
header compatible with the Arduino RadioHead Library.

https://www.airspayce.com/mikem/arduino/RadioHead/
classRHGenericDriver.html (https://adafru.it/LAa)

Each message sent and received by a RadioHead driver includes 4
headers:

TO - the node address that the message is being sent to (broadcast
RH_BROADCAST_ADDRESS (255) is permitted)
FROM - the node address of the sending node
ID - a message ID, distinct (over short time scales) for each message
sent by a particular node
FLAGS- a bitmask of flags. The most significant 4 bits are reserved for
use by RadioHead. The least significant 4 bits are reserved for
applications.

For basic usage the TO and FROM addresses are set to "Broadcast" with a value of
255 (0xff) and the ID and FLAGS parameters are ignored. With these settings any
packet received will be accepted.

•

•
•

•

©Adafruit Industries Page 47 of 83

https://www.airspayce.com/mikem/arduino/RadioHead/classRHGenericDriver.html
https://www.airspayce.com/mikem/arduino/RadioHead/classRHGenericDriver.html

Node Addressing

In many applications, it will be desirable to limit packets received to those originating
at specified nodes and to direct responses to particular nodes. This can be controlled
by setting the "node" and "destination" attributes for the rfm9x instance created in
your CircuitPython code. https://circuitpython.readthedocs.io/projects/rfm69/en/latest/
api.html (https://adafru.it/LAb)

This example demonstrates the usage of the RadioHead Header settings to specify
the address of the transmitting and receiving nodes.

This script is to be run on the board designated as Node 1. It will transmit a packet to
Node 2 every 10 seconds

Example to send a packet periodically between addressed nodes
Author: Jerry Needell
#
import time
import board
import busio
import digitalio
import adafruit_rfm69

set the time interval (seconds) for sending packets
transmit_interval = 10

Define radio parameters.
RADIO_FREQ_MHZ = 915.0 # Frequency of the radio in Mhz. Must match your
module! Can be a value like 915.0, 433.0, etc.

Define pins connected to the chip.
CS = digitalio.DigitalInOut(board.CE1)
RESET = digitalio.DigitalInOut(board.D25)

Initialize SPI bus.
spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
Initialze RFM radio
rfm69 = adafruit_rfm69.RFM69(spi, CS, RESET, RADIO_FREQ_MHZ)

Optionally set an encryption key (16 byte AES key). MUST match both
on the transmitter and receiver (or be set to None to disable/the default).
rfm69.encryption_key = (

b"\x01\x02\x03\x04\x05\x06\x07\x08\x01\x02\x03\x04\x05\x06\x07\x08"
)

set node addresses
rfm69.node = 1
rfm69.destination = 2
initialize counter
counter = 0
send a broadcast message from my_node with ID = counter
rfm69.send(

bytes("Startup message {} from node {}".format(counter, rfm69.node), "UTF-8")
)

Wait to receive packets.
print("Waiting for packets...")
now = time.monotonic()

©Adafruit Industries Page 48 of 83

https://circuitpython.readthedocs.io/projects/rfm69/en/latest/api.html
https://circuitpython.readthedocs.io/projects/rfm69/en/latest/api.html

while True:
Look for a new packet: only accept if addresses to my_node
packet = rfm69.receive(with_header=True)
If no packet was received during the timeout then None is returned.
if packet is not None:

Received a packet!
Print out the raw bytes of the packet:
print("Received (raw header):", [hex(x) for x in packet[0:4]])
print("Received (raw payload): {0}".format(packet[4:]))
print("Received RSSI: {0}".format(rfm69.last_rssi))

if time.monotonic() - now > transmit_interval:
now = time.monotonic()
counter = counter + 1
send a mesage to destination_node from my_node
rfm69.send(

bytes(
"message number {} from node {}".format(counter, rfm69.node),

"UTF-8"
),
keep_listening=True,

)

This script is to be run on the board designated as Node 2. It will report the packets
received from Node 1 and send a reply to Node 1 after every 10th packet received.

Example to send a packet periodically between addressed nodes
Author: Jerry Needell
#
import time
import board
import busio
import digitalio
import adafruit_rfm69

Define radio parameters.
RADIO_FREQ_MHZ = 915.0 # Frequency of the radio in Mhz. Must match your
module! Can be a value like 915.0, 433.0, etc.

Define pins connected to the chip.
CS = digitalio.DigitalInOut(board.CE1)
RESET = digitalio.DigitalInOut(board.D25)

Initialize SPI bus.
spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)

Initialze RFM radio
rfm69 = adafruit_rfm69.RFM69(spi, CS, RESET, RADIO_FREQ_MHZ)

Optionally set an encryption key (16 byte AES key). MUST match both
on the transmitter and receiver (or be set to None to disable/the default).
rfm69.encryption_key = (

b"\x01\x02\x03\x04\x05\x06\x07\x08\x01\x02\x03\x04\x05\x06\x07\x08"
)

set node addresses
rfm69.node = 2
rfm69.destination = 1
initialize counter
counter = 0
send a broadcast message from my_node with ID = counter
rfm69.send(bytes("startup message from node {} ".format(rfm69.node), "UTF-8"))

Wait to receive packets.
print("Waiting for packets...")
initialize flag and timer
time_now = time.monotonic()

©Adafruit Industries Page 49 of 83

while True:
Look for a new packet: only accept if addresses to my_node
packet = rfm69.receive(with_header=True)
If no packet was received during the timeout then None is returned.
if packet is not None:

Received a packet!
Print out the raw bytes of the packet:
print("Received (raw header):", [hex(x) for x in packet[0:4]])
print("Received (raw payload): {0}".format(packet[4:]))
print("Received RSSI: {0}".format(rfm69.last_rssi))
send reading after any packet received
counter = counter + 1
after 10 messages send a response to destination_node from my_node with

ID = counter&0xff
if counter % 10 == 0:

time.sleep(0.5) # brief delay before responding
rfm69.identifier = counter & 0xFF
rfm69.send(

bytes(
"message number {} from node {} ".format(counter, rfm69.node),
"UTF-8",

),
keep_listening=True,

)

Reliable Datagram

During basic transmissions or the above address examples, there is no way to confirm
if a packet was actually received by the destination node.

The "Reliable Datagram" mode attempts to provide that reassurance.

When invoked, this mode requires that every addressed packet (non-Broadcast) be
acknowledged by sending a specially formatted ACK packet in response as described
for the RadioHead Library https://www.airspayce.com/mikem/arduino/RadioHead/
classRHReliableDatagram.html (https://adafru.it/LAc)

An ack consists of a message with:

TO set to the from address of the original message
FROM set to this node address
ID set to the ID of the original message
FLAGS with the RH_FLAGS_ACK bit set
1 octet of payload containing ASCII '!' (since some drivers cannot
handle 0 length payloads)

Instead of the standard send() function use the send_with_ack() function. this
configures the sending program to send the packet then wait for the responding ACK
packet.

•
•
•
•
•

©Adafruit Industries Page 50 of 83

https://www.airspayce.com/mikem/arduino/RadioHead/classRHReliableDatagram.html
https://www.airspayce.com/mikem/arduino/RadioHead/classRHReliableDatagram.html

At the receiving node, the extra parameter with_ack=True must be passed to the
receive() function so it generates the ACK packet in response.

This example sets up a "Reliable Datagram" exchange between Nodes 1 and 2. Node 1
sends a packet to Node 2 every 10 seconds and waits for an ACK. This script is
executed by Node 1

Example to send a packet periodically between addressed nodes with ACK
Author: Jerry Needell
#
import time
import board
import busio
import digitalio
import adafruit_rfm69

set the time interval (seconds) for sending packets
transmit_interval = 10

Define radio parameters.
RADIO_FREQ_MHZ = 915.0 # Frequency of the radio in Mhz. Must match your
module! Can be a value like 915.0, 433.0, etc.

Define pins connected to the chip.
set GPIO pins as necessary -- this example is for Raspberry Pi
CS = digitalio.DigitalInOut(board.CE1)
RESET = digitalio.DigitalInOut(board.D25)

Initialize SPI bus.
spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
Initialze RFM radio
rfm69 = adafruit_rfm69.RFM69(spi, CS, RESET, RADIO_FREQ_MHZ)

Optionally set an encryption key (16 byte AES key). MUST match both
on the transmitter and receiver (or be set to None to disable/the default).
rfm69.encryption_key = (

b"\x01\x02\x03\x04\x05\x06\x07\x08\x01\x02\x03\x04\x05\x06\x07\x08"
)

set delay before sending ACK
rfm69.ack_delay = 0.1
set node addresses
rfm69.node = 1
rfm69.destination = 2
initialize counter
counter = 0
ack_failed_counter = 0
send startup message from my_node
rfm69.send_with_ack(bytes("startup message from node {}".format(rfm69.node),
"UTF-8"))

Wait to receive packets.
print("Waiting for packets...")
initialize flag and timer
time_now = time.monotonic()
while True:

Look for a new packet: only accept if addresses to my_node
packet = rfm69.receive(with_ack=True, with_header=True)
If no packet was received during the timeout then None is returned.
if packet is not None:

Received a packet!
Print out the raw bytes of the packet:
print("Received (raw header):", [hex(x) for x in packet[0:4]])
print("Received (raw payload): {0}".format(packet[4:]))

©Adafruit Industries Page 51 of 83

print("RSSI: {0}".format(rfm69.last_rssi))
send reading after any packet received

if time.monotonic() - time_now > transmit_interval:
reset timeer
time_now = time.monotonic()
counter += 1
send a mesage to destination_node from my_node
if not rfm69.send_with_ack(

bytes("message from node node {} {}".format(rfm69.node, counter),
"UTF-8")

):
ack_failed_counter += 1
print(" No Ack: ", counter, ack_failed_counter)

And this one is executed by Node 2. It acknowledges each packet and sends a
response packet after a 2 second delay. Node 1 will acknowledge the response
packet.

Example to receive addressed packed with ACK and send a response
Author: Jerry Needell
#
import time
import board
import busio
import digitalio
import adafruit_rfm69

Define radio parameters.
RADIO_FREQ_MHZ = 915.0 # Frequency of the radio in Mhz. Must match your
module! Can be a value like 915.0, 433.0, etc.

Define pins connected to the chip.
set GPIO pins as necessary - this example is for Raspberry Pi
CS = digitalio.DigitalInOut(board.CE1)
RESET = digitalio.DigitalInOut(board.D25)

Initialize SPI bus.
spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
Initialze RFM radio
rfm69 = adafruit_rfm69.RFM69(spi, CS, RESET, RADIO_FREQ_MHZ)

Optionally set an encryption key (16 byte AES key). MUST match both
on the transmitter and receiver (or be set to None to disable/the default).
rfm69.encryption_key = (

b"\x01\x02\x03\x04\x05\x06\x07\x08\x01\x02\x03\x04\x05\x06\x07\x08"
)

set delay before transmitting ACK (seconds)
rfm69.ack_delay = 0.1
set node addresses
rfm69.node = 2
rfm69.destination = 1
initialize counter
counter = 0
ack_failed_counter = 0

Wait to receive packets.
print("Waiting for packets...")
while True:

Look for a new packet: only accept if addresses to my_node
packet = rfm69.receive(with_ack=True, with_header=True)
If no packet was received during the timeout then None is returned.
if packet is not None:

Received a packet!
Print out the raw bytes of the packet:

©Adafruit Industries Page 52 of 83

print("Received (raw header):", [hex(x) for x in packet[0:4]])
print("Received (raw payload): {0}".format(packet[4:]))
print("RSSI: {0}".format(rfm69.last_rssi))
send response 2 sec after any packet received
time.sleep(2)
counter += 1
send a mesage to destination_node from my_node
if not rfm69.send_with_ack(

bytes("response from node {} {}".format(rfm69.node, counter), "UTF-8")
):

ack_failed_counter += 1
print(" No Ack: ", counter, ack_failed_counter)

Python Docs for RFM69
Python Docs for RFM69 (https://adafru.it/C5v)

CircuitPython for RFM9x LoRa
It's easy to use the RFM9x LoRa radio with CircuitPython and the Adafruit
CircuitPython RFM9x (https://adafru.it/BjD) module. This module allows you to easily
write Python code that sends and receives packets of data with the radio. Be careful
to note this library is for the RFM95/96/97/98 LoRa radio only and will not work with
the simpler RFM69 packet radio.

Design Considerations

One thing to be aware of before you use the RFM9x series of radios with
CircuitPython are some of the limitations and design considerations for its module.
 Keep these in mind as you think about projects using the RFM9x and CircuitPython:

You can only send and receive packets up to 252 bytes in length at a time. The
size of the radio's internal buffer dictates this limit so if you want to send longer
messages you'll need to break them into a series of smaller send calls in your
application code.
Receiving packets is a 'best effort' in pure Python code. Unlike the Arduino
versions of the RFM9x library there is no interrupt support which means when a
packet is received it must be immediately processed by the Python code or it
could be lost. For your application it will work best to only receive small, single
packet messages at a time. Don't try to receive kilobytes of data or else you'll
lose packets. This module is really intended for simple single packet messages
like 'ON', 'OFF', etc.
Sending and receiving packets will 'block' your Python code until the packet is
fully processed. This means you can't do a lot of other things while sending and
waiting for packets to be received. Design your application so the radio usage

•

•

•

©Adafruit Industries Page 53 of 83

https://circuitpython.readthedocs.io/projects/rfm69/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_RFM9x
https://github.com/adafruit/Adafruit_CircuitPython_RFM9x

is the primary scenario and very little other tasks need to happen in the
background.
The module is written to be compatible with the RadioHead RFM95 Arduino
library. This means by default the module will setup the radio with the same
modulation and configuration for transmitting and receiving at the maximum
distance with LoRa support. In addition the CircuitPython module uses the same
packet preamble (8 bytes) and header (4 bytes) as RadioHead. If you want to
use different modulations or settings you'll need to configure the radio yourself
after carefully consulting the datasheet.
The CircuitPython module supports advanced RadioHead features like the node
addressing and "Reliable Datagram". "Reliable DataGram" mode in CircuitPython
has some additional parameters to control timing that are not available with the
RadioHead library. It may be difficult to get reliable transmission to work
between the RadioHead library and CircuitPython.
Encryption and sync words are also not supported by the LoRa radio module.
You must perform these operations yourself in your application code if they're
desired.

Wiring With Breakout

First wire up a RFM9x breakout to your board as shown on the previous pages for
Arduino. Note that the G0/interrupt line is not used by the CircuitPython module and
can remain unconnected. Here's an example of wiring a Feather M0 to the radio with
a SPI connection:

Board 3V to radio VIN

•

•

•

•

©Adafruit Industries Page 54 of 83

Board GND to radio GND
Board SCK to radio SCK
Board MOSI to radio MOSI
Board MISO to radio MISO
Board D5 to radio CS (or any other digital I/O pin)
Board D6 to radio RST (or any other digital I/O pin)

Upgrading to the UF2 Bootlader (https://adafru.it/ODG)

Usage with All-In-One Feather M0

Alternatively you can use the default bootloader on the Feather M0 RFM9x board but
be sure you load the adafruit-circuitpython-feather_m0_rfm9x-*.bin (https://adafru.it/
tBa) version of CircuitPython on your board! This is very important as the RFM9x
build has special pins added to the board module which are used to access the
radio's control lines!

For details on how to load a binary circuitpython build, check out our Non-UF2-Install
guide (https://adafru.it/Bed)

Adafruit Feather M0 with RFM95 LoRa
Radio - 900MHz
This is the Adafruit Feather M0 RFM95
LoRa Radio (900MHz). We call these
RadioFruits, our take on an
microcontroller with a...
https://www.adafruit.com/product/3178

•
•
•
•
•
•

The Feather M0 LoRa does NOT come with UF2 bootloader or CircuitPython pre-
installed, you can install CircuitPython as described below or update to the UF2
bootloader before installing CircuitPython

©Adafruit Industries Page 55 of 83

https://learn.adafruit.com/installing-circuitpython-on-samd21-boards
https://github.com/adafruit/circuitpython/releases
file:///home/welcome-to-circuitpython/non-uf2-installation
file:///home/welcome-to-circuitpython/non-uf2-installation
https://www.adafruit.com/product/3178
https://www.adafruit.com/product/3178
https://www.adafruit.com/product/3178

Adafruit Feather M0 RFM96 LoRa Radio -
433MHz
This is the Adafruit Feather M0 RFM96
LoRa Radio (433 MHz). We call these
RadioFruits, our take on an
microcontroller with a "
https://www.adafruit.com/product/3179

Module Install

If you have the Feather M0 RFM9x and have installed CircuitPython 6.0 or later, it is
not necessary to install the library modules. They are "frozen into" the Circuitpython
build. Skip to the "Usage" section below.

If you are using an older version of CircuitPython you will need to install the modules
as described.

Next you'll need to install the Adafruit CircuitPython RFM9x (https://adafru.it/
BjD) module on your CircuitPython board. Before you do that make sure you are
running the latest version of Adafruit CircuitPython (https://adafru.it/Amd) for your
board too (again be sure to the load the Feather M0 RFM9x version if you're using
that board and want to use its built-in radio module).

Next you'll need to install the necessary libraries to use the hardware--carefully follow
the steps to find and install these libraries from Adafruit's CircuitPython library
bundle (https://adafru.it/zdx). Our introduction guide has a great page on how to
install the library bundle (https://adafru.it/ABU) for both express and non-express
boards.

Remember for non-express boards like the, you'll need to manually install the
necessary libraries from the bundle:

adafruit_rfm9x.mpy
adafruit_bus_device

You can also download the adafruit_rfm9x.mpy from its releases page on
Github (https://adafru.it/Bl1).

•
•

©Adafruit Industries Page 56 of 83

https://www.adafruit.com/product/3179
https://www.adafruit.com/product/3179
https://www.adafruit.com/product/3179
https://github.com/adafruit/Adafruit_CircuitPython_RFM9x
file:///home/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
file:///home/welcome-to-circuitpython/circuitpython-libraries
file:///home/welcome-to-circuitpython/circuitpython-libraries
https://github.com/adafruit/Adafruit_CircuitPython_RFM9x/releases
https://github.com/adafruit/Adafruit_CircuitPython_RFM9x/releases

Before continuing make sure your board's lib folder or root filesystem has
the adafruit_rfm9x.mpy, and adafruit_bus_device files and folders copied over.

Usage
To demonstrate the usage of the radio we'll initialize it and send and receive data
from the board's Python REPL.

Connect to the board's serial REPL (https://adafru.it/Awz)so you are at the
CircuitPython >>> prompt.

Run the following code to import the necessary modules and initialize the
SPI connection with the radio:

import board
import busio
import digitalio
spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)

Now define a few of the pins connected to the RFM9x, specifically the CS and RST
pins:

cs = digitalio.DigitalInOut(board.D5)
reset = digitalio.DigitalInOut(board.D6)

However if you're using the Feather M0 RFM95 board with a built-in RFM9x radio (and
you've loaded the special version of CircuitPython just for this board as mentioned
above), you instead want to use these pins for the CS and RST lines:

cs = digitalio.DigitalInOut(board.RFM9X_CS)
reset = digitalio.DigitalInOut(board.RFM9X_RST)

You're ready to import the RFM9x module and create an instance of the RFM9x class
inside it. Before you create the radio module instance you'll need to check if you're
using a 433mhz or 915mhz radio module as the initializer requires the frequency to be
specified--confirm which frequency your module uses and run one of the following
lines.

For a 915mhz radio use:

©Adafruit Industries Page 57 of 83

file:///home/welcome-to-circuitpython/the-repl

import adafruit_rfm9x
rfm9x = adafruit_rfm9x.RFM9x(spi, cs, reset, 915.0)

Or for a 433mhz radio use:

import adafruit_rfm9x
rfm9x = adafruit_rfm9x.RFM9x(spi, cs, reset, 433.0)

Notice the initializer takes the following required parameters:

spi - The SPI bus connected to the board.
cs - The DigitalInOut instance connected to the CS line of the radio.
reset - The DigitalInOut instance connected to the RST or reset line of the radio.
frequency - The frequency in megahertz of the radio module. Remember this
frequency depends on which type of radio you're using and the frequency you
desire to use!

In addition there are some optional parameters you might specify:

baudrate - The baud rate to use for the SPI connection to the radio. By default
this is 10mhz which is as fast as the radio can handle, but in some cases it might
be too fast if you're wiring up a breakout to a breadboard (breadboards can be
notorious for not working well with high speed signals). If you run into odd
errors like being unable to find the RFM9x radio try lowering the baudrate by
specifying a baudrate=1000000 keyword (which sets the speed to a lower 1mhz
value).

Once the RFM9x class is created and initialized you're ready to start sending and
receiving data.

Remember by default the module will be configured to interface with the "RadioHead"
RFM9x setup so you can also send and receive packets with an Arduino running the
RFM95 TX/RX examples!

To send a message simply call the send function and provide a string or byte string of
data:

rfm9x.send('Hello world!')

•
•
•
•

•

©Adafruit Industries Page 58 of 83

Remember you can only send a message up to 252 bytes in length at a time!
Attempting to send a message longer than 252 bytes will fail with an exception error.
 If you need to send a longer message it will have to be broken up into multiple send
calls and reconstructed on the receiving side.

If you have another RFM9x on the same frequency waiting to receive messages (like
another CircuitPython module running receive code below) you should see it receive
the message.

You can even have an Arduino running the RadioHead library's RFM95 client example
see the message that was sent:

To receive a message simply call the receive function. This function will wait for
half a second for any packet to be received. If a packet is found it will be returned as
a byte string (remember packets are at most 252 bytes long), or if no packet was
found a result of None is returned.

rfm9x.receive()

You can increase the amount of time the module waits for a packet to be received by
specifying the time in seconds as a parameter to the receive call:

rfm9x.receive(timeout=5.0) # Wait 5 seconds instead of 0.5 seconds.

Notice this waits longer at the REPL for a packet to be received before returning. If
you have another RFM9x setup try having it send a message while the other is waiting
to receive it. You should see a byte string returned. You can also have an Arduino
running the RadioHead library's RFM95 client example send messages that are
received by your code:

©Adafruit Industries Page 59 of 83

One thing to note in Python byte strings aren't exactly like text strings and you might
not be able to do all the text processing (like find, replace, etc.) as you expect.
 However you can convert a byte string into text by assuming a specific text encoding
like ASCII. For example to receive a packet and convert the contents to an ASCII text
string you can run code like:

packet = rfm9x.receive() # Wait for a packet to be received (up to 0.5 seconds)
if packet is not None:
 packet_text = str(packet, 'ascii')
 print('Received: {0}'.format(packet_text))

Notice this code first receives a packet, then checks if one was actually found (the
packet is not None check--if no packet is received a value of None is returned), and
then converts the packet data to a string assuming an ASCII text encoding.

Beyond RX & TX
Beyond basic sending and receiving there are a few properties of the RFM69 class
you might want to interact with:

tx_power - This is a power level (in dB) to use when transmitting with the radio.
By default this is set to a moderate 13 dB value, however you can increase this
depending on the type of radio you're using. For high power radios (the
modules sold by Adafruit) they support a range of TX power from 5 to 23 dB.
Try increasing this to the maximum 23 dB level (however check your local laws
for permission to transmit with such power!) to get the most distance and range.
rssi - The received signal strength indicator is a property you can read to see
the strength of the radio signal being received. This is updated when packets
are received and returns a value in decibels (typically negative, so
the smaller the number and closer to 0, the higher the strength / better the
signal).

•

•

©Adafruit Industries Page 60 of 83

That's all there is to the basic RFM9x radio usage! Remember the CircuitPython
module is designed for sending and receiving small up to 252 byte control messages
and not large or high bandwidth amounts of data.

Here's a complete example of sending a message and waiting to receive and print
any received messages. Save this as main.py on your board and open the serial
REPL to see it print data and any received messages. If you have two boards and
radios setup to run this code at the same time they'll send each other a message on
start up!

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

Simple demo of sending and recieving data with the RFM95 LoRa radio.
Author: Tony DiCola
import board
import busio
import digitalio

import adafruit_rfm9x

Define radio parameters.
RADIO_FREQ_MHZ = 915.0 # Frequency of the radio in Mhz. Must match your
module! Can be a value like 915.0, 433.0, etc.

Define pins connected to the chip, use these if wiring up the breakout according
to the guide:
CS = digitalio.DigitalInOut(board.D5)
RESET = digitalio.DigitalInOut(board.D6)
Or uncomment and instead use these if using a Feather M0 RFM9x board and the
appropriate
CircuitPython build:
CS = digitalio.DigitalInOut(board.RFM9X_CS)
RESET = digitalio.DigitalInOut(board.RFM9X_RST)

Define the onboard LED
LED = digitalio.DigitalInOut(board.D13)
LED.direction = digitalio.Direction.OUTPUT

Initialize SPI bus.
spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)

Initialze RFM radio
rfm9x = adafruit_rfm9x.RFM9x(spi, CS, RESET, RADIO_FREQ_MHZ)

Note that the radio is configured in LoRa mode so you can't control sync
word, encryption, frequency deviation, or other settings!

You can however adjust the transmit power (in dB). The default is 13 dB but
high power radios like the RFM95 can go up to 23 dB:
rfm9x.tx_power = 23

©Adafruit Industries Page 61 of 83

Send a packet. Note you can only send a packet up to 252 bytes in length.
This is a limitation of the radio packet size, so if you need to send larger
amounts of data you will need to break it into smaller send calls. Each send
call will wait for the previous one to finish before continuing.
rfm9x.send(bytes("Hello world!\r\n", "utf-8"))
print("Sent Hello World message!")

Wait to receive packets. Note that this library can't receive data at a fast
rate, in fact it can only receive and process one 252 byte packet at a time.
This means you should only use this for low bandwidth scenarios, like sending
and receiving a single message at a time.
print("Waiting for packets...")

while True:
packet = rfm9x.receive()
Optionally change the receive timeout from its default of 0.5 seconds:
packet = rfm9x.receive(timeout=5.0)
If no packet was received during the timeout then None is returned.
if packet is None:

Packet has not been received
LED.value = False
print("Received nothing! Listening again...")

else:
Received a packet!
LED.value = True
Print out the raw bytes of the packet:
print("Received (raw bytes): {0}".format(packet))
And decode to ASCII text and print it too. Note that you always
receive raw bytes and need to convert to a text format like ASCII
if you intend to do string processing on your data. Make sure the
sending side is sending ASCII data before you try to decode!
packet_text = str(packet, "ascii")
print("Received (ASCII): {0}".format(packet_text))
Also read the RSSI (signal strength) of the last received message and
print it.
rssi = rfm9x.last_rssi
print("Received signal strength: {0} dB".format(rssi))

Advanced CircuitPython RFM9x Library
Usage
RadioHead Header

Every packet transmitted via the CircuitPython RFM9x Library contains a 4 byte
header compatible with the Arduino RadioHead Library.

https://www.airspayce.com/mikem/arduino/RadioHead/
classRHGenericDriver.html (https://adafru.it/LAa)

Each message sent and received by a RadioHead driver includes 4
headers:

TO - the node address that the message is being sent to (broadcast
RH_BROADCAST_ADDRESS (255) is permitted)
FROM -the node address of the sending node

•

•

©Adafruit Industries Page 62 of 83

https://www.airspayce.com/mikem/arduino/RadioHead/classRHGenericDriver.html
https://www.airspayce.com/mikem/arduino/RadioHead/classRHGenericDriver.html

ID - a message ID, distinct (over short time scales) for each message
sent by a particular node
FLAGS - a bitmask of flags. The most significant 4 bits are reserved
for use by RadioHead. The least significant 4 bits are reserved for
applications.

For basic usage, the TO and FROM addresses are set to "Broadcast" with a value of
255 (0xff) and the ID and FLAGS parameters are ignored. With these settings any
packet received will be accepted.

Node Addressing

In many applications, it will be desirable to limit packets received to those originating
at specified nodes and to direct responses to particular nodes. This can be controlled
by setting the "node" and "destination" attributes for the rfm9x instance created in
your CircuitPython code. https://circuitpython.readthedocs.io/projects/rfm9x/en/latest/
api.html (https://adafru.it/LAd)

This example demonstrates the usage of the RadioHead Header settings to specify
the address of the transmitting and receiving nodes.

This script is to be run on the board designated as Node 1. It will transmit a packet to
Node 2 every 10 seconds

Example to send a packet periodically between addressed nodes
Author: Jerry Needell
#
import time
import board
import busio

•

•

©Adafruit Industries Page 63 of 83

https://circuitpython.readthedocs.io/projects/rfm9x/en/latest/api.html
https://circuitpython.readthedocs.io/projects/rfm9x/en/latest/api.html

import digitalio
import adafruit_rfm9x

set the time interval (seconds) for sending packets
transmit_interval = 10

Define radio parameters.
RADIO_FREQ_MHZ = 915.0 # Frequency of the radio in Mhz. Must match your
module! Can be a value like 915.0, 433.0, etc.

Define pins connected to the chip.
CS = digitalio.DigitalInOut(board.CE1)
RESET = digitalio.DigitalInOut(board.D25)

Initialize SPI bus.
spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
Initialze RFM radio
rfm9x = adafruit_rfm9x.RFM9x(spi, CS, RESET, RADIO_FREQ_MHZ)

enable CRC checking
rfm9x.enable_crc = True
set node addresses
rfm9x.node = 1
rfm9x.destination = 2
initialize counter
counter = 0
send a broadcast message from my_node with ID = counter
rfm9x.send(

bytes("Startup message {} from node {}".format(counter, rfm9x.node), "UTF-8")
)

Wait to receive packets.
print("Waiting for packets...")
now = time.monotonic()
while True:

Look for a new packet: only accept if addresses to my_node
packet = rfm9x.receive(with_header=True)
If no packet was received during the timeout then None is returned.
if packet is not None:

Received a packet!
Print out the raw bytes of the packet:
print("Received (raw header):", [hex(x) for x in packet[0:4]])
print("Received (raw payload): {0}".format(packet[4:]))
print("Received RSSI: {0}".format(rfm9x.last_rssi))

if time.monotonic() - now > transmit_interval:
now = time.monotonic()
counter = counter + 1
send a mesage to destination_node from my_node
rfm9x.send(

bytes(
"message number {} from node {}".format(counter, rfm9x.node),

"UTF-8"
),
keep_listening=True,

)

This other script is to be run on the board designated as Node 2. It will report the
packets received from Node 1 and send a reply to Node 1 after every 10th packet
received.

Example to send a packet periodically between addressed nodes
Author: Jerry Needell
#
import time

©Adafruit Industries Page 64 of 83

import board
import busio
import digitalio
import adafruit_rfm9x

Define radio parameters.
RADIO_FREQ_MHZ = 915.0 # Frequency of the radio in Mhz. Must match your
module! Can be a value like 915.0, 433.0, etc.

Define pins connected to the chip.
CS = digitalio.DigitalInOut(board.CE1)
RESET = digitalio.DigitalInOut(board.D25)

Initialize SPI bus.
spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)

Initialze RFM radio
rfm9x = adafruit_rfm9x.RFM9x(spi, CS, RESET, RADIO_FREQ_MHZ)

enable CRC checking
rfm9x.enable_crc = True
set node addresses
rfm9x.node = 2
rfm9x.destination = 1
initialize counter
counter = 0
send a broadcast message from my_node with ID = counter
rfm9x.send(bytes("startup message from node {} ".format(rfm9x.node), "UTF-8"))

Wait to receive packets.
print("Waiting for packets...")
initialize flag and timer
time_now = time.monotonic()
while True:

Look for a new packet: only accept if addresses to my_node
packet = rfm9x.receive(with_header=True)
If no packet was received during the timeout then None is returned.
if packet is not None:

Received a packet!
Print out the raw bytes of the packet:
print("Received (raw header):", [hex(x) for x in packet[0:4]])
print("Received (raw payload): {0}".format(packet[4:]))
print("Received RSSI: {0}".format(rfm9x.last_rssi))
send reading after any packet received
counter = counter + 1
after 10 messages send a response to destination_node from my_node with

ID = counter&0xff
if counter % 10 == 0:

time.sleep(0.5) # brief delay before responding
rfm9x.identifier = counter & 0xFF
rfm9x.send(

bytes(
"message number {} from node {} ".format(counter, rfm9x.node),
"UTF-8",

),
keep_listening=True,

)

Reliable Datagram

During basic transmissions or the above address examples, there is no way to confirm
if a packet was actually received by the destination node.

©Adafruit Industries Page 65 of 83

The "Reliable Datagram" mode attempts to provide that reassurance.

When invoked, this mode requires that every addressed packet (non-Broadcast) be
acknowledged by sending a specially formatted ACK packet in response as described
for the RadioHead Library https://www.airspayce.com/mikem/arduino/RadioHead/
classRHReliableDatagram.html (https://adafru.it/LAc)

An ack consists of a message with:

TO set to the from address of the original message
FROM set to this node address
ID set to the ID of the original message
FLAGS with the RH_FLAGS_ACK bit set
1 octet of payload containing ASCII '!' (since some drivers cannot
handle 0 length payloads)

Instead of the standard send() function use the send_with_ack() function. this
configures the sending program to send the packet then wait for the responding ACK
packet.

At the receiving node, the extra parameter with_ack=True must be passed to the
receive() function so it generates the ACK packet in response.

This example sets up a "Reliable Datagram" exchange between Nodes 1 and 2. Node 1
sends a packet to Node 2 every 10 seconds and waits for an ACK.

This script is executed by Node 1

Example to send a packet periodically between addressed nodes with ACK
Author: Jerry Needell
#
import time
import board
import busio
import digitalio
import adafruit_rfm9x

set the time interval (seconds) for sending packets
transmit_interval = 10

Define radio parameters.
RADIO_FREQ_MHZ = 915.0 # Frequency of the radio in Mhz. Must match your
module! Can be a value like 915.0, 433.0, etc.

Define pins connected to the chip.
set GPIO pins as necessary -- this example is for Raspberry Pi
CS = digitalio.DigitalInOut(board.CE1)
RESET = digitalio.DigitalInOut(board.D25)

Initialize SPI bus.

•
•
•
•
•

©Adafruit Industries Page 66 of 83

https://www.airspayce.com/mikem/arduino/RadioHead/classRHReliableDatagram.html
https://www.airspayce.com/mikem/arduino/RadioHead/classRHReliableDatagram.html

spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
Initialze RFM radio
rfm9x = adafruit_rfm9x.RFM9x(spi, CS, RESET, RADIO_FREQ_MHZ)

enable CRC checking
rfm9x.enable_crc = True
set delay before sending ACK
rfm9x.ack_delay = 0.1
set node addresses
rfm9x.node = 1
rfm9x.destination = 2
initialize counter
counter = 0
ack_failed_counter = 0
send startup message from my_node
rfm9x.send_with_ack(bytes("startup message from node {}".format(rfm9x.node),
"UTF-8"))

Wait to receive packets.
print("Waiting for packets...")
initialize flag and timer
time_now = time.monotonic()
while True:

Look for a new packet: only accept if addresses to my_node
packet = rfm9x.receive(with_ack=True, with_header=True)
If no packet was received during the timeout then None is returned.
if packet is not None:

Received a packet!
Print out the raw bytes of the packet:
print("Received (raw header):", [hex(x) for x in packet[0:4]])
print("Received (raw payload): {0}".format(packet[4:]))
print("RSSI: {0}".format(rfm9x.last_rssi))
send reading after any packet received

if time.monotonic() - time_now > transmit_interval:
reset timeer
time_now = time.monotonic()
counter += 1
send a mesage to destination_node from my_node
if not rfm9x.send_with_ack(

bytes("message from node node {} {}".format(rfm9x.node, counter),
"UTF-8")

):
ack_failed_counter += 1
print(" No Ack: ", counter, ack_failed_counter)

This one is executed by Node 2. It acknowledges each packet and sends a response
packet after a 2 second delay. Node 1 will acknowledge the response packet.

Example to receive addressed packed with ACK and send a response
Author: Jerry Needell
#
import time
import board
import busio
import digitalio
import adafruit_rfm9x

Define radio parameters.
RADIO_FREQ_MHZ = 915.0 # Frequency of the radio in Mhz. Must match your
module! Can be a value like 915.0, 433.0, etc.

Define pins connected to the chip.
set GPIO pins as necessary - this example is for Raspberry Pi
CS = digitalio.DigitalInOut(board.CE1)
RESET = digitalio.DigitalInOut(board.D25)

©Adafruit Industries Page 67 of 83

Initialize SPI bus.
spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
Initialze RFM radio
rfm9x = adafruit_rfm9x.RFM9x(spi, CS, RESET, RADIO_FREQ_MHZ)

enable CRC checking
rfm9x.enable_crc = True
set delay before transmitting ACK (seconds)
rfm9x.ack_delay = 0.1
set node addresses
rfm9x.node = 2
rfm9x.destination = 1
initialize counter
counter = 0
ack_failed_counter = 0

Wait to receive packets.
print("Waiting for packets...")
while True:

Look for a new packet: only accept if addresses to my_node
packet = rfm9x.receive(with_ack=True, with_header=True)
If no packet was received during the timeout then None is returned.
if packet is not None:

Received a packet!
Print out the raw bytes of the packet:
print("Received (raw header):", [hex(x) for x in packet[0:4]])
print("Received (raw payload): {0}".format(packet[4:]))
print("RSSI: {0}".format(rfm9x.last_rssi))
send response 2 sec after any packet received
time.sleep(2)
counter += 1
send a mesage to destination_node from my_node
if not rfm9x.send_with_ack(

bytes("response from node {} {}".format(rfm9x.node, counter), "UTF-8")
):

ack_failed_counter += 1
print(" No Ack: ", counter, ack_failed_counter)

CRC Checking

The above examples also enable CRC checking.

if a packet fails the CRC check, it will be ignored. A warning is presented to the REPL
if it is open, but the packet is not returned. This helps avoid having to deal with
corrupted packets. When used with the "Reliable DataGram" mode, the packet will not
be ACK'ed so it will be resent.

enable CRC checking
rfm9x.enable_crc = True

If a CRC error occurs, it is reported to the REPL as a warning - no Exception is
generated.

UserWarning: CRC error, packet ignored
warn("CRC error, packet ignored")

©Adafruit Industries Page 68 of 83

Python Docs for RFM9x LoRa
Python Docs for RFM9x LoRa (https://adafru.it/C5w)

Advanced CircuitPython Library RFM9x/
RFM69 - Tweaking Parameters
One of the factors that limits the reliability of packet transmission and receipt using
CircuitPython is the current lack of support for "interrupts". This means that the library
can only "poll" for available packets and there are significant time gaps when the
code is switching between transmit and receive. Packets can be missed during these
transitions. Using the Reliable Datagram mode should help, but even with that there
are cases when the timing just does not work well. There are several parameters that
can be adjusted to help minimize the likelihood of a missed packet.

These parameters are noted here for the RFM9x (https://adafru.it/LAd) and here for
the RFM69 (https://adafru.it/LAb). The RFM9x is used as an example below, but the
parameters are the same for the RFM69.

If you are having trouble receiving the ACK packets from the the recipient, it may be
helpful to enable a delay between receipt of the packet and transmission of the ACK
packet.

This is done via the ack_delay attribute. The default setting is None so the ACK
packet is sent as quickly as possible. This may be too fast for some systems,
especially when using a Raspberry Pi where there can be delays associated with the
operating system.

A delay of 0.1 seconds was used in the Reliable Datagram examples:

Initialize SPI bus.
spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
Initialze RFM radio
rfm9x = adafruit_rfm9x.RFM9x(spi, CS, RESET, RADIO_FREQ_MHZ)

enable CRC checking
rfm9x.enable_crc = True
set delay before transmitting ACK (seconds)
rfm9x.ack_delay = 0.1
set node addresses
rfm9x.node = 2
rfm9x.destination = 1

©Adafruit Industries Page 69 of 83

https://circuitpython.readthedocs.io/projects/rfm9x/en/latest/
https://circuitpython.readthedocs.io/projects/rfm9x/en/latest/api.html
https://circuitpython.readthedocs.io/projects/rfm69/en/latest/api.html
https://circuitpython.readthedocs.io/projects/rfm69/en/latest/api.html

Other parameters that may be useful to adjust are:

rfm9x. ack_wait (defaults to 0.5ms)

This sets the delay before retrying transmission of a packet after no ACK
has been received.

rfm9x.receive_timeout (defaults to 0.5ms)

Set the amount of time the receive() function will listen for incoming
packets before returning if none received. This can also passed as a
function argument.

rfm9x.ack_retries (defaults to 5 retries)

Set the number or retries to attempt if no ACK message is received.

Another simple adjustment is to pay attention to when packets are transmitted after
receipt. Depending on the application, it may be helpful to add a delay between the
receipt of a packet and the transmission of a response.

send response 2 sec after any packet received
time.sleep(2)

RFM9X Test

Note that the sub-GHz radio is not designed for streaming audio or video! It's best
used for small packets of data. The data rate is adjustbale but its common to stick to

•

◦

•

◦

•

◦

©Adafruit Industries Page 70 of 83

around 19.2 Kbps (thats bits per second). Lower data rates will be more successful in
their transmissions

You will, of course, need at least two paired radios to do any testing! The radios must
be matched in frequency (e.g. 900 MHz & 900 MHz are ok, 900 MHz & 433 MHz are
not). They also must use the same encoding schemes, you cannot have a 900 MHz
RFM69 packet radio talk to a 900 MHz RFM96 LoRa radio.

Arduino Library
These radios have really excellent code already written, so rather than coming up
with a new standard we suggest using existing libraries such as AirSpayce's
Radiohead library (https://adafru.it/mCA) which also suppors a vast number of other
radios

This is a really great Arduino Library, so please support them in thanks for their
efforts!

RadioHead RFM9x Library example

To begin talking to the radio, you will need to download the RadioHead library (https://
adafru.it/mCA). You can do that by visiting the github repo and manually downloading
or, easier, just click this button to download the zip corresponding to version 1.59

Note that while all the code in the examples below are based on this version you can
visit the RadioHead documentation page to get the most recent version which may
have bug-fixes or more functionality (https://adafru.it/mCA)

Download RadioHead v1.59
https://adafru.it/mHC

Uncompress the zip and find the folder named RadioHead and check that the
RadioHead folder contains RH_RF95.cpp and RH_RF95.h (as well as a few dozen
other files for radios that are supported)

Place the RadioHead library folder your arduinosketchfolder/libraries/ folder.
You may need to create the libraries subfolder if its your first library. Restart the IDE.

We also have a great tutorial on Arduino library installation at:
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://
adafru.it/aYM)

©Adafruit Industries Page 71 of 83

http://www.airspayce.com/mikem/arduino/RadioHead/
http://www.airspayce.com/mikem/arduino/RadioHead/
http://www.airspayce.com/mikem/arduino/RadioHead/
http://www.airspayce.com/mikem/arduino/RadioHead/
http://www.airspayce.com/mikem/arduino/RadioHead/
https://cdn-learn.adafruit.com/assets/assets/000/031/670/original/RadioHead-1.59.zip?1460574831
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

Basic RX & TX example
Lets get a basic demo going, where one Arduino transmits and the other receives.
We'll start by setting up the transmitter

Transmitter example code

This code will send a small packet of data once a second to node address #1

Load this code into your Transmitter Arduino!

// LoRa 9x_TX
// -*- mode: C++ -*-
// Example sketch showing how to create a simple messaging client (transmitter)
// with the RH_RF95 class. RH_RF95 class does not provide for addressing or
// reliability, so you should only use RH_RF95 if you do not need the higher
// level messaging abilities.
// It is designed to work with the other example LoRa9x_RX

#include <SPI.h>
#include <RH_RF95.h>

#define RFM95_CS 10
#define RFM95_RST 9
#define RFM95_INT 2

// Change to 434.0 or other frequency, must match RX's freq!
#define RF95_FREQ 915.0

// Singleton instance of the radio driver
RH_RF95 rf95(RFM95_CS, RFM95_INT);

void setup()
{
 pinMode(RFM95_RST, OUTPUT);
 digitalWrite(RFM95_RST, HIGH);

 while (!Serial);
 Serial.begin(9600);
 delay(100);

 Serial.println("Arduino LoRa TX Test!");

 // manual reset
 digitalWrite(RFM95_RST, LOW);
 delay(10);
 digitalWrite(RFM95_RST, HIGH);
 delay(10);

 while (!rf95.init()) {
 Serial.println("LoRa radio init failed");
 while (1);
 }
 Serial.println("LoRa radio init OK!");

 // Defaults after init are 434.0MHz, modulation GFSK_Rb250Fd250, +13dbM
 if (!rf95.setFrequency(RF95_FREQ)) {
 Serial.println("setFrequency failed");
 while (1);

©Adafruit Industries Page 72 of 83

 }
 Serial.print("Set Freq to: "); Serial.println(RF95_FREQ);

 // Defaults after init are 434.0MHz, 13dBm, Bw = 125 kHz, Cr = 4/5, Sf = 128chips/
symbol, CRC on

 // The default transmitter power is 13dBm, using PA_BOOST.
 // If you are using RFM95/96/97/98 modules which uses the PA_BOOST transmitter
pin, then
 // you can set transmitter powers from 5 to 23 dBm:
 rf95.setTxPower(23, false);
}

int16_t packetnum = 0; // packet counter, we increment per xmission

void loop()
{
 Serial.println("Sending to rf95_server");
 // Send a message to rf95_server

 char radiopacket[20] = "Hello World # ";
 itoa(packetnum++, radiopacket+13, 10);
 Serial.print("Sending "); Serial.println(radiopacket);
 radiopacket[19] = 0;

 Serial.println("Sending..."); delay(10);
 rf95.send((uint8_t *)radiopacket, 20);

 Serial.println("Waiting for packet to complete..."); delay(10);
 rf95.waitPacketSent();
 // Now wait for a reply
 uint8_t buf[RH_RF95_MAX_MESSAGE_LEN];
 uint8_t len = sizeof(buf);

 Serial.println("Waiting for reply..."); delay(10);
 if (rf95.waitAvailableTimeout(1000))
 {
 // Should be a reply message for us now
 if (rf95.recv(buf, &len))
 {
 Serial.print("Got reply: ");
 Serial.println((char*)buf);
 Serial.print("RSSI: ");
 Serial.println(rf95.lastRssi(), DEC);
 }
 else
 {
 Serial.println("Receive failed");
 }
 }
 else
 {
 Serial.println("No reply, is there a listener around?");
 }
 delay(1000);
}

Once uploaded you should see the following on the serial console

©Adafruit Industries Page 73 of 83

Now open up another instance of the Arduino IDE - this is so you can see the serial
console output from the TX Arduino while you set up the RX Arduino.

Receiver example code

This code will receive and acknowledge a small packet of data.

Load this code into your Receiver Arduino!

// Arduino9x_RX
// -*- mode: C++ -*-
// Example sketch showing how to create a simple messaging client (receiver)
// with the RH_RF95 class. RH_RF95 class does not provide for addressing or
// reliability, so you should only use RH_RF95 if you do not need the higher
// level messaging abilities.
// It is designed to work with the other example Arduino9x_TX

#include <SPI.h>
#include <RH_RF95.h>

#define RFM95_CS 10
#define RFM95_RST 9
#define RFM95_INT 2

// Change to 434.0 or other frequency, must match RX's freq!
#define RF95_FREQ 915.0

// Singleton instance of the radio driver
RH_RF95 rf95(RFM95_CS, RFM95_INT);

// Blinky on receipt
#define LED 13

void setup()
{
 pinMode(LED, OUTPUT);
 pinMode(RFM95_RST, OUTPUT);
 digitalWrite(RFM95_RST, HIGH);

©Adafruit Industries Page 74 of 83

 while (!Serial);
 Serial.begin(9600);
 delay(100);

 Serial.println("Arduino LoRa RX Test!");

 // manual reset
 digitalWrite(RFM95_RST, LOW);
 delay(10);
 digitalWrite(RFM95_RST, HIGH);
 delay(10);

 while (!rf95.init()) {
 Serial.println("LoRa radio init failed");
 while (1);
 }
 Serial.println("LoRa radio init OK!");

 // Defaults after init are 434.0MHz, modulation GFSK_Rb250Fd250, +13dbM
 if (!rf95.setFrequency(RF95_FREQ)) {
 Serial.println("setFrequency failed");
 while (1);
 }
 Serial.print("Set Freq to: "); Serial.println(RF95_FREQ);

 // Defaults after init are 434.0MHz, 13dBm, Bw = 125 kHz, Cr = 4/5, Sf = 128chips/
symbol, CRC on

 // The default transmitter power is 13dBm, using PA_BOOST.
 // If you are using RFM95/96/97/98 modules which uses the PA_BOOST transmitter
pin, then
 // you can set transmitter powers from 5 to 23 dBm:
 rf95.setTxPower(23, false);
}

void loop()
{
 if (rf95.available())
 {
 // Should be a message for us now
 uint8_t buf[RH_RF95_MAX_MESSAGE_LEN];
 uint8_t len = sizeof(buf);

 if (rf95.recv(buf, &len))
 {
 digitalWrite(LED, HIGH);
 RH_RF95::printBuffer("Received: ", buf, len);
 Serial.print("Got: ");
 Serial.println((char*)buf);
 Serial.print("RSSI: ");
 Serial.println(rf95.lastRssi(), DEC);

 // Send a reply
 uint8_t data[] = "And hello back to you";
 rf95.send(data, sizeof(data));
 rf95.waitPacketSent();
 Serial.println("Sent a reply");
 digitalWrite(LED, LOW);
 }
 else
 {
 Serial.println("Receive failed");
 }
 }
}

©Adafruit Industries Page 75 of 83

Now open up the Serial console on the receiver, while also checking in on the
transmitter's serial console. You should see the receiver is...well, receiving packets

You can see that the library example prints out the hex-bytes received 48 65 6C 6C
6F 20 57 6F 72 6C 64 20 23 30 0 20 20 20 20 0 , as well as the ASCII 'string'
Hello World . Then it will send a reply.

And, on the transmitter side, it is now printing that it got a reply after each
transmisssion And hello back to you because it got a reply from the receiver

©Adafruit Industries Page 76 of 83

That's pretty much the basics of it! Lets take a look at the examples so you know how
to adapt to your own radio setup

Radio Pinout
This is the pinout setup - you can change around the reset and CS pins to any pin. the
IRQ pin should be an interrupt pin. On an UNO this is pin #2 or pin #3. Each chipset
has different interrupt pins!

#define RFM95_CS 10
#define RFM95_RST 9
#define RFM95_INT 2

Frequency
You can dial in the frequency you want the radio to communicate on, such as 915.0,
434.0 or 868.0 or any number really. Different countries/ITU Zones have different ISM
bands so make sure you're using those or if you are licensed, those frequencies you
may use

// Change to 434.0 or other frequency, must match RX's freq!
#define RF95_FREQ 915.0

You can then instantiate the radio object with our custom pin numbers.

// Singleton instance of the radio driver
RH_RF95 rf95(RFM95_CS, RFM95_INT);

©Adafruit Industries Page 77 of 83

Setup
We begin by setting up the serial console and hard-resetting the Radio

void setup()
{
 pinMode(LED, OUTPUT);
 pinMode(RFM95_RST, OUTPUT);
 digitalWrite(RFM95_RST, HIGH);

 while (!Serial); // wait until serial console is open, remove if not tethered to
computer
 Serial.begin(9600);
 delay(100);
 Serial.println("Arduino LoRa RX Test!");

 // manual reset
 digitalWrite(RFM95_RST, LOW);
 delay(10);
 digitalWrite(RFM95_RST, HIGH);
 delay(10);

Remove the while (!Serial); line if you are not tethering to a computer, as it will cause
the Arduino to halt until a USB connection is made!

Initializing Radio

The library gets initialized with a call to init(). Once initialized, you can set the
frequency. You can also configure the output power level, the number ranges from 5
to 23. Start with the highest power level (23) and then scale down as necessary

 while (!rf95.init()) {
 Serial.println("LoRa radio init failed");
 while (1);
 }
 Serial.println("LoRa radio init OK!");

 // Defaults after init are 434.0MHz, modulation GFSK_Rb250Fd250, +13dbM
 if (!rf95.setFrequency(RF95_FREQ)) {
 Serial.println("setFrequency failed");
 while (1);
 }
 Serial.print("Set Freq to: "); Serial.println(RF95_FREQ);

 // Defaults after init are 434.0MHz, 13dBm, Bw = 125 kHz, Cr = 4/5, Sf = 128chips/
symbol, CRC on

 // The default transmitter power is 13dBm, using PA_BOOST.
 // If you are using RFM95/96/97/98 modules which uses the PA_BOOST transmitter
pin, then
 // you can set transmitter powers from 5 to 23 dBm:
 rf95.setTxPower(23, false);

©Adafruit Industries Page 78 of 83

Transmission Code

If you are using the transmitter, this code will wait 1 second, then transmit a packet
with "Hello World #" and an incrementing packet number

void loop()
{
 delay(1000); // Wait 1 second between transmits, could also 'sleep' here!
 Serial.println("Transmitting..."); // Send a message to rf95_server

 char radiopacket[20] = "Hello World # ";
 itoa(packetnum++, radiopacket+13, 10);
 Serial.print("Sending "); Serial.println(radiopacket);
 radiopacket[19] = 0;

 Serial.println("Sending..."); delay(10);
 rf95.send((uint8_t *)radiopacket, 20);

 Serial.println("Waiting for packet to complete..."); delay(10);
 rf95.waitPacketSent();

Its pretty simple, the delay does the waiting, you can replace that with low power
sleep code. Then it generates the packet and appends a number that increases every
tx. Then it simply calls send to transmit the data, and passes in the array of data and
the length of the data.

Note that this does not any addressing or subnetworking - if you want to make sure
the packet goes to a particular radio, you may have to add an identifier/address byte
on your own!

Then you call waitPacketSent() to wait until the radio is done transmitting. You will not
get an automatic acknowledgement, from the other radio unless it knows to send
back a packet. Think of it like the 'UDP' of radio - the data is sent, but its not certain it
was received! Also, there will not be any automatic retries.

Receiver Code

The Receiver has the same exact setup code, but the loop is different

void loop()
{
 if (rf95.available())
 {
 // Should be a message for us now
 uint8_t buf[RH_RF95_MAX_MESSAGE_LEN];
 uint8_t len = sizeof(buf);

 if (rf95.recv(buf, &len))
 {
 digitalWrite(LED, HIGH);
 RH_RF95::printBuffer("Received: ", buf, len);

©Adafruit Industries Page 79 of 83

 Serial.print("Got: ");
 Serial.println((char*)buf);
 Serial.print("RSSI: ");
 Serial.println(rf95.lastRssi(), DEC);

Instead of transmitting, it is constantly checking if there's any data packets that have
been received. available() will return true if a packet with proper error-correction was
received. If so, the receiver prints it out in hex and also as a 'character string'

It also prints out the RSSI which is the receiver signal strength indicator. This number
will range from about -15 to about -100. The larger the number (-15 being the highest
you'll likely see) the stronger the signal.

Once done it will automatically reply, which is a way for the radios to know that there
was an acknowledgement

// Send a reply
 uint8_t data[] = "And hello back to you";
 rf95.send(data, sizeof(data));
 rf95.waitPacketSent();
 Serial.println("Sent a reply");

It simply sends back a string and waits till the reply is completely sent

Downloads

Datasheets & Files
SX127x Datasheet (http://adafru.it/31791276777879)- The RFM9X LoRa radio
chip itself
SX1231 Datasheet (http://adafru.it/30761231) - The RFM69 radio chip itself
RFM69HCW datasheet (http://adafru.it/30766911)- contains the SX1231
datasheet plus details about the module (https://adafru.it/mFX)
RFM9X (https://adafru.it/19CS) - The radio module, which contains the SX1272
chipset
RFM69 FCC Test Report (http://adafru.it/307030703076699152)
RFM9x FCC Test Report (https://adafru.it/19sD)
EagleCAD PCB files on GitHub (https://adafru.it/oem)
Fritzing objects in the Adafruit Fritzing library (https://adafru.it/c7M)

Schematic
RFM69 and RFM9X have the same pinout so the same schematic is used

•

•
•

•

•
•
•
•

©Adafruit Industries Page 80 of 83

https://cdn-shop.adafruit.com/product-files/3179/sx1276_77_78_79.pdf
https://cdn-shop.adafruit.com/product-files/3076/sx1231.pdf
https://cdn-shop.adafruit.com/product-files/3076/RFM69HCW-V1.1.pdf
https://cdn-learn.adafruit.com/assets/assets/000/031/659/original/RFM95_96_97_98W.pdf?1460518717
https://cdn-learn.adafruit.com/assets/assets/000/031/659/original/RFM95_96_97_98W.pdf?1460518717
https://www.hoperf.com/uploads/RFM96W-V2.0_1695351477.pdf
https://cdn-shop.adafruit.com/product-files/3070/p3070p3076_RFM69HCW-915S2-FCC.pdf
https://cdn-learn.adafruit.com/assets/assets/000/050/479/original/RFM95-915S2%2813dBm%29_FCC.pdf
https://github.com/adafruit/Adafruit-RFM-LoRa-Radio-Breakout-PCB
https://github.com/adafruit/Fritzing-Library/

Fabrication Print
RFM69 and RFM9X have the same layout so the same board is used

©Adafruit Industries Page 81 of 83

Radio Module F.A.Q.
Which gives better range, LoRa or RFM69?

All other things being equal (antenna, power output, location) you will get better
range with LoRa than with RFM69 modules. We've found 50% to 100% range
improvement is common.

What ranges can I expect for RFM69 radios?
The RFM69 radios have a range of approx. 500 meters line of sight with tuned uni-
directional antennas. Depending on obstructions, frequency, antenna and power
output, you will get lower ranges - especially if you are not line of sight.

What ranges can I expect for RFM9X LoRa radios?
The RFM9x radios have a range of up to 2 km line of sight with tuned uni-
directional antennas. Depending on obstructions, frequency, antenna and power
output, you will get lower ranges - especially if you are not line of sight.

I don't seem to be getting the range advertised! Is my
module broken?

Your module is probably not broken. Radio range is dependant on a lot of things
and all must be attended to make sure you get the best performance!

Tuned antenna for your frequency - getting a well-tuned antenna is incredibly
important. Your antenna must be tuned for the exact frequency you are using
Matching frequency - make sure all modules are on the same exact frequency
Matching settings - all radios must have the same settings so they can
communicate
Directional vs non-directional antennas - for the best range, directional
antennas like Yagi will direct your energy in one path instead of all around
Good power supply - a nice steady power supply will keep your transmissions
clean and strong
Max power settings on the radios - they can be set for higher/lower power!
Don't forget to set them to max.
Line of sight - No obstructions, walls, trees, towers, buildings, mountains, etc
can be in the way of your radio path. Likewise, outdoors is way better than
indoors because its very hard to bounce radio paths around a building

1.

2.
3.

4.

5.

6.

7.

©Adafruit Industries Page 82 of 83

Radio transmission speed - trying to transmit more data faster will be hard. Go
for small packets, with lots of retransmissions. Lowering the baud rate on the
radio (see the libraries for how to do this) will give you better reliability

How do I pick/design the right antenna?
Various antennas will cost diferent amounts and give you different directional gain.
In general, spending a lot on a large fixed antenna can give you better power
transfer if the antenna is well tuned. For most simple uses, a wire works pretty well

The ARRL antena book is recommended if you want to learn how to do the
modeling and analysis (https://adafru.it/sdN)

But nothing beats actual tests in your environment!

What frequency is my module?
Look for a little colored paint dot on top of the module.

GREEN, BLUE or NO DOT = 900 MHz
RED = 433 MHz

Every now and then the paint dot shows up without a color or with the ink dot
burnt. This is just a manufacturing variance and there is nothing wrong with the
board. You should get the frequency you ordered though. So if you plan on mixing
these up, you may want to add a new mark of your own.

My radio has a burnt blob on it, is it damaged?
Nope! The radios have an ink dot on them, which sometimes gets toasty when we
put the board through the oven, or rework it, so it may have a burnt appearance.
The chip is fine!

What is the MAC address used for?
Each LoRa device from Adafruit should come with a small label that contains a MAC
address in the form 98:76:B6:xx:yy:zz. This might be a sticker attached to the
device itself or included separately. This MAC address is needed if using the LoRa
device with LoRaWAN (https://adafru.it/18D0). For example, The Things
Network (https://adafru.it/BsB) uses LoRaWAN. For non-LoRaWAN usage, the MAC
address is not needed.

8.

•
•

©Adafruit Industries Page 83 of 83

https://www.arrl.org/shop/Antennas/
https://www.arrl.org/shop/Antennas/
https://lora-alliance.org/about-lorawan/
https://www.thethingsnetwork.org/
https://www.thethingsnetwork.org/

	Adafruit RFM69HCW and RFM9X LoRa Packet Radio Breakouts
	Table of Contents
	Overview
	Pinouts
	Assembly
	Arduino Wiring
	Using the RFM69 Radio
	CircuitPython for RFM69
	Advanced CircuitPython RFM69 Library Usage
	Python Docs for RFM69
	CircuitPython for RFM9x LoRa
	Advanced CircuitPython RFM9x Library Usage
	Python Docs for RFM9x LoRa
	Advanced CircuitPython Library RFM9x/RFM69 - Tweaking Parameters
	RFM9X Test
	Downloads
	Radio Module F.A.Q.

	Overview
	Pinouts
	Power Pins
	SPI Logic pins:
	Radio GPIO
	Antenna Connection
	Assembly
	Prepare the header strip:
	Add the breakout board:
	And Solder!

	Antenna Options
	Wire Antenna

	uFL Connector
	SMA Edge-Mount Connector
	Arduino Wiring
	Using the RFM69 Radio
	"Raw" vs Packetized
	Arduino Libraries
	RadioHead Library example

	Basic RX & TX example
	Basic Transmitter example code
	Basic receiver example code
	Radio Freq. Config
	Configuring Radio Pinout
	Setup
	Initializing Radio
	Basic Transmission Code
	Basic Receiver Code

	Basic Receiver/Transmitter Demo w/OLED
	Addressed RX and TX Demo
	CircuitPython for RFM69
	Design Considerations
	Wiring With Breakout
	Usage with All-In-One Feather M0
	Module Install

	Usage
	Beyond RX & TX
	Advanced CircuitPython RFM69 Library Usage
	RadioHead Header
	Node Addressing
	Reliable Datagram

	Python Docs for RFM69
	CircuitPython for RFM9x LoRa
	Design Considerations
	Wiring With Breakout
	Usage with All-In-One Feather M0
	Module Install

	Usage
	Beyond RX & TX
	Advanced CircuitPython RFM9x Library Usage
	RadioHead Header
	Node Addressing
	Reliable Datagram
	CRC Checking

	Python Docs for RFM9x LoRa
	Advanced CircuitPython Library RFM9x/RFM69 - Tweaking Parameters
	RFM9X Test
	Arduino Library
	RadioHead RFM9x Library example

	Basic RX & TX example
	Transmitter example code
	Receiver example code

	Radio Pinout
	Frequency
	Setup
	Initializing Radio
	Transmission Code
	Receiver Code

	Downloads
	Datasheets & Files
	Schematic
	Fabrication Print
	Radio Module F.A.Q.
	Which gives better range, LoRa or RFM69?
	What ranges can I expect for RFM69 radios?
	What ranges can I expect for RFM9X LoRa radios?
	I don't seem to be getting the range advertised! Is my module broken?
	How do I pick/design the right antenna?
	What frequency is my module?
	My radio has a burnt blob on it, is it damaged?
	What is the MAC address used for?

