Before you begin this project, we recommend reading the following guides:
Before you begin this project, we recommend reading the following guides:
Tools & Supplies
- Carrera foldable helmet (we had to order ours from the UK)
- NeoPixel strip (about 1.5m)
- FLORA main board
- FLORA LSM303 accelerometer/compass
- FLORA Ultimate GPS
- Rechargeable lithium polymer battery and charger
- coincell battery and holder (optional to improve GPS fix time)
- Needle and clear thread
- Scissors
Upgrading to a higher end soldering iron setup, like the Hakko FX-888 that we stock in our store, will make soldering fun and easy.
Do not use a "ColdHeat" soldering iron! They are not suitable for delicate electronics work and can damage the Flora (see here).
Click here to buy our entry level adjustable 30W 110V soldering iron.
Click here to upgrade to a Genuine Hakko FX-888 adjustable temperature soldering iron.
Learn how to solder with tons of tutorials!
Click here to buy a spool of leaded solder (recommended for beginners).
Click here to buy a spool of lead-free solder.
Click here to buy a basic multimeter.
Click here to buy a top of the line multimeter.
Click here to buy a pocket multimeter.
Don't forget to learn how to use your multimeter too!
Wiring Diagram
Build Circuit
Cut the strip to length at the opposite back edge and tack the LED strip to the nylon webbing in the grooves of the helmet with a needle and clear thread. We didn't affix to every piece of webbing, just in enough spots to secure the LED strip.
Strip and tin three wires, then solder them to the input side of the LED strip.
Cut to length, strip and solder these wires to VBATT, D6, and GND, referring to the wiring diagram on the previous page if necessary.
Solder the wires to 3.3v, SCL, SDA, and GND on FLORA, referring again to the wiring diagram.
Sugru insulates the back of the GPS module from the LSM303 and FLORA main board, and also provides a semipermanent sticky situation. The silicone is not quite an adhesive, though it will remain affixed unless you choose to carefully peel it off.
The lithium polymer battery slides behind the elastic of the head brace. We sewed a small fabric pouch around the battery, which in turn was stitched to the elastic.
Program it
The Citi Bike Helmet code takes the FLORA to the limit. The code is used to drive LEDs, the FLORA GPS module, and the FLORA compass/accelerometer module. It looks at a long list of all Citi bike sharing stations in NYC (over 300!) and determines which coordinate is closest to you. It then uses the GPS module, and the compass module to navigate you there. The code is located in this GitHub repo. Click the button below to download the code.
- Adafruit GPS library which can be downloaded from https://github.com/adafruit/Adafruit-GPS-Library
- Adafruit NeoPixel library which can be downloaded from https://github.com/adafruit/Adafruit_NeoPixel
- Pololu LSM303 library which can be downloaded from https://github.com/pololu/LSM303
// SPDX-FileCopyrightText: 2019 Becky Stern for Adafruit Industries // SPDX-FileCopyrightText: 2019 Justin Cooper for Adafruit Industries // // SPDX-License-Identifier: MIT // Code for the Adafruit FLora Citi Bike Helmet Tutorial // https://learn.adafruit.com/citi-bike-helmet // Becky Stern and Justin Cooper, Adafruit.com // // This code shows how to listen to the GPS module in an interrupt // which allows the program to have more 'freedom' - just parse // when a new NMEA sentence is available! Then access data when // desired. // // Tested and works great with the Adafruit Flora GPS module // ------> https://adafruit.com/products/1059 // Pick one up today at the Adafruit electronics shop // and help support open source hardware & software! -ada #include <Adafruit_GPS.h> #include <SoftwareSerial.h> #include <Wire.h> #include <LSM303.h> #include <Adafruit_NeoPixel.h> LSM303 compass; #define LAT_LON_SIZE 311 const float lat_lon[LAT_LON_SIZE][2] PROGMEM = { {40.767272, -73.993928}, {40.719115, -74.006666}, {40.711174, -74.000165}, {40.683826, -73.976323}, {40.741776, -74.001497}, {40.696089, -73.978034}, {40.686767, -73.959281}, {40.731724, -74.006744}, {40.727102, -74.002970}, {40.714255, -73.981308}, {40.692395, -73.993379}, {40.698398, -73.980689}, {40.716250, -74.009105}, {40.715421, -74.011219}, {40.720873, -73.980857}, {40.721815, -73.997203}, {40.714739, -74.009106}, {40.690892, -73.996123}, {40.729170, -73.998102}, {40.753230, -73.970325}, {40.748900, -73.976048}, {40.739713, -73.994564}, {40.760646, -73.984426}, {40.738176, -73.977386}, {40.709056, -74.010433}, {40.743349, -74.006817}, {40.700378, -73.995480}, {40.702771, -73.993836}, {40.690284, -73.987071}, {40.737815, -73.999946}, {40.711463, -74.005524}, {40.741951, -74.008030}, {40.727434, -73.993790}, {40.695976, -73.990148}, {40.692462, -73.989639}, {40.728418, -73.987139}, {40.730473, -73.986723}, {40.736196, -74.008592}, {40.691965, -73.981301}, {40.689810, -73.974931}, {40.697883, -73.973503}, {40.688663, -73.980518}, {40.691960, -73.965368}, {40.693270, -73.977038}, {40.735353, -74.004830}, {40.721853, -74.007717}, {40.718709, -74.009000}, {40.724560, -73.995652}, {40.723179, -73.994800}, {40.732263, -73.998522}, {40.735439, -73.994539}, {40.735324, -73.998004}, {40.719392, -74.002472}, {40.689407, -73.968854}, {40.701221, -74.012342}, {40.703651, -74.011677}, {40.694748, -73.983624}, {40.691782, -73.973729}, {40.717290, -73.996375}, {40.707064, -74.007318}, {40.722293, -73.991475}, {40.723683, -73.975748}, {40.750977, -73.987654}, {40.719105, -73.999733}, {40.693082, -73.971789}, {40.685281, -73.978058}, {40.686918, -73.976682}, {40.686500, -73.965633}, {40.717487, -74.010455}, {40.697665, -73.984764}, {40.699869, -73.982719}, {40.733319, -73.995101}, {40.708272, -73.968341}, {40.734545, -73.990741}, {40.684568, -73.958810}, {40.760202, -73.964784}, {40.713452, -73.983985}, {40.730286, -73.990764}, {40.730493, -73.995721}, {40.714066, -73.992939}, {40.714130, -73.997046}, {40.686832, -73.979677}, {40.728984, -73.990518}, {40.722174, -73.983687}, {40.720828, -73.977931}, {40.723627, -73.999496}, {40.704633, -74.013617}, {40.760957, -73.967244}, {40.708235, -74.005300}, {40.714274, -73.989900}, {40.713079, -73.998511}, {40.714978, -74.013012}, {40.689269, -73.989128}, {40.717227, -73.988020}, {40.722632, -73.988873}, {40.696102, -73.967510}, {40.694246, -73.992159}, {40.703553, -74.006702}, {40.709559, -74.006536}, {40.724537, -73.981854}, {40.753201, -73.977987}, {40.713361, -74.009376}, {40.717439, -74.005834}, {40.699917, -73.989717}, {40.696192, -73.991218}, {40.692361, -73.986317}, {40.689888, -73.981013}, {40.736245, -73.984737}, {40.729538, -73.984267}, {40.715337, -74.016583}, {40.724055, -74.009659}, {40.720434, -74.010206}, {40.714504, -74.005627}, {40.711731, -73.991930}, {40.712199, -73.979481}, {40.742387, -73.997262}, {40.729039, -73.994046}, {40.730477, -73.999060}, {40.703799, -74.008386}, {40.725806, -73.974224}, {40.712690, -73.987763}, {40.717821, -73.976289}, {40.717399, -73.980165}, {40.697940, -73.969868}, {40.685144, -73.953809}, {40.736494, -73.997043}, {40.736528, -74.006180}, {40.728738, -74.007488}, {40.724909, -74.001547}, {40.718502, -73.983298}, {40.715595, -73.987029}, {40.705309, -74.006125}, {40.763406, -73.977224}, {40.685395, -73.974314}, {40.693631, -73.962235}, {40.716021, -73.999743}, {40.716226, -73.982612}, {40.732617, -73.991580}, {40.732915, -74.007113}, {40.755102, -73.974986}, {40.707179, -74.008873}, {40.716058, -73.991907}, {40.751726, -73.987535}, {40.708346, -74.017134}, {40.689004, -73.960238}, {40.682231, -73.961458}, {40.693261, -73.968896}, {40.758280, -73.970694}, {40.730385, -74.002149}, {40.732241, -74.000263}, {40.694528, -73.958089}, {40.693317, -73.953819}, {40.726794, -73.996950}, {40.708621, -74.007221}, {40.722437, -74.005664}, {40.734011, -74.002938}, {40.734926, -73.992005}, {40.736251, -74.000836}, {40.683178, -73.965964}, {40.714948, -74.002344}, {40.712732, -74.004607}, {40.710445, -73.965250}, {40.692215, -73.984284}, {40.697601, -73.993445}, {40.695078, -73.987247}, {40.722992, -73.979954}, {40.725213, -73.977687}, {40.688070, -73.984106}, {40.680342, -73.955768}, {40.684157, -73.969222}, {40.691651, -73.999978}, {40.688515, -73.964762}, {40.719260, -73.981780}, {40.720195, -73.989978}, {40.740343, -73.989551}, {40.725028, -73.990696}, {40.740582, -74.005508}, {40.739323, -74.008119}, {40.695128, -73.995950}, {40.700101, -73.991043}, {40.710762, -73.994003}, {40.720664, -73.985179}, {40.722280, -73.976687}, {40.715815, -73.994223}, {40.702818, -73.987657}, {40.704717, -74.009260}, {40.687534, -73.972651}, {40.712912, -74.010202}, {40.702240, -73.982578}, {40.695807, -73.973555}, {40.687644, -73.969689}, {40.695733, -73.971296}, {40.770513, -73.988038}, {40.765849, -73.986905}, {40.717548, -74.013220}, {40.702515, -74.014270}, {40.724677, -73.987834}, {40.701485, -73.986569}, {40.688646, -73.982634}, {40.726217, -73.983798}, {40.729553, -73.980572}, {40.743174, -74.003664}, {40.741739, -73.994155}, {40.682165, -73.953990}, {40.680983, -73.950047}, {40.727791, -73.985649}, {40.726280, -73.989780}, {40.752554, -73.972826}, {40.756019, -73.967446}, {40.746841, -73.994458}, {40.708530, -73.964089}, {40.742354, -73.989150}, {40.727407, -73.981420}, {40.744876, -73.995298}, {40.763707, -73.985161}, {40.756603, -73.997900}, {40.764618, -73.987894}, {40.762272, -73.987882}, {40.744751, -73.999153}, {40.754557, -73.965929}, {40.750019, -73.969053}, {40.759710, -73.974023}, {40.766953, -73.981693}, {40.748061, -74.007231}, {40.745227, -74.007979}, {40.712858, -73.965902}, {40.735876, -73.982050}, {40.746919, -74.004518}, {40.742065, -74.004431}, {40.759345, -73.967596}, {40.755135, -73.986580}, {40.743954, -73.991448}, {40.683124, -73.978951}, {40.765265, -73.981923}, {40.763440, -73.982681}, {40.743453, -74.000040}, {40.712868, -73.956981}, {40.745712, -73.981948}, {40.721100, -73.991925}, {40.745167, -73.986830}, {40.735242, -73.987585}, {40.743943, -73.979660}, {40.756405, -73.990026}, {40.760300, -73.998842}, {40.760192, -73.991255}, {40.766696, -73.990617}, {40.712604, -73.962644}, {40.739355, -73.999317}, {40.732232, -73.988899}, {40.755002, -73.980144}, {40.750380, -73.983389}, {40.746200, -73.988557}, {40.733142, -73.975738}, {40.756458, -73.993722}, {40.750663, -74.001768}, {40.751575, -73.994190}, {40.740963, -73.986022}, {40.750199, -73.990930}, {40.756800, -73.982911}, {40.747348, -73.997235}, {40.762698, -73.993012}, {40.737261, -73.992389}, {40.737049, -73.990092}, {40.748548, -73.988084}, {40.762288, -73.983361}, {40.744219, -73.971212}, {40.738274, -73.987519}, {40.732218, -73.981655}, {40.749012, -73.988483}, {40.739126, -73.979737}, {40.763413, -73.996674}, {40.745497, -74.001971}, {40.760659, -73.980420}, {40.729386, -73.977724}, {40.750072, -73.998392}, {40.768254, -73.988639}, {40.760875, -74.002776}, {40.760094, -73.994618}, {40.752068, -73.967843}, {40.751492, -73.977988}, {40.747803, -73.973441}, {40.751884, -73.977701}, {40.759922, -73.976485}, {40.750449, -73.994810}, {40.757147, -73.972078}, {40.754665, -73.991381}, {40.755273, -73.983169}, {40.755941, -74.002116}, {40.747659, -73.984907}, {40.743155, -73.974347}, {40.742909, -73.977060}, {40.757569, -73.990985}, {40.771522, -73.990541}, {40.718939, -73.992662}, {40.710451, -73.960876}, {40.752996, -73.987216}, {40.702550, -74.012723}, {40.741443, -73.975360}, {40.740258, -73.984092}, {40.757952, -73.977876}, {40.715348, -73.960241}, {40.741472, -73.983209}, {40.736502, -73.978094}, {40.744449, -73.983035}, {40.702550, -73.989402}, {40.698920, -73.973329}, {40.716887, -73.963198}, {40.734160, -73.980242}, {40.725500, -74.004451}, {40.705311, -73.971000}, {40.765909, -73.976341} }; // Connect the GPS Power pin to 5V // Connect the GPS Ground pin to ground // If using software serial (sketch example default): // Connect the GPS TX (transmit) pin to Digital 8 // Connect the GPS RX (receive) pin to Digital 7 // If using hardware serial: // Connect the GPS TX (transmit) pin to Arduino RX1 (Digital 0) // Connect the GPS RX (receive) pin to matching TX1 (Digital 1) // If using software serial, keep these lines enabled // (you can change the pin numbers to match your wiring): //SoftwareSerial mySerial(8, 7); //Adafruit_GPS GPS(&mySerial); // If using hardware serial, comment // out the above two lines and enable these two lines instead: Adafruit_GPS GPS(&Serial1); HardwareSerial mySerial = Serial1; // Set GPSECHO to 'false' to turn off echoing the GPS data to the Serial console // Set to 'true' if you want to debug and listen to the raw GPS sentences #define GPSECHO false Adafruit_NeoPixel strip = Adafruit_NeoPixel(45, 6, NEO_GRB + NEO_KHZ800); int FarRight = 9; int CenterRight = 10; int CenterLeft = 34; int FarLeft = 35; int HeadsUp[] = {35, 34, 10, 9}; int RightStrip[] = {8, 7, 6, 5, 4, 3, 2, 1, 0}; int RightCenterStrip[] = {11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}; int LeftCenterStrip[] = {33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23}; int LeftStrip[] = {36, 37, 38, 39, 40, 41, 42, 43, 44}; int counter = 0; // this keeps track of whether we're using the interrupt // off by default! boolean usingInterrupt = false; void setup() { // connect at 115200 so we can read the GPS fast enough and echo without dropping chars // also spit it out Serial.begin(115200); delay(5000); Serial.println("initialize"); //test to find the closest location from the list, just plug in a lat lon from the above Array //Serial.print("Closest Test Loc: "); //Serial.println(find_closest_location(40.726378, -74.005437)); Wire.begin(); // 9600 NMEA is the default baud rate for Adafruit MTK GPS's- some use 4800 GPS.begin(9600); // uncomment this line to turn on RMC (recommended minimum) and GGA (fix data) including altitude GPS.sendCommand(PMTK_SET_NMEA_OUTPUT_RMCGGA); // uncomment this line to turn on only the "minimum recommended" data //GPS.sendCommand(PMTK_SET_NMEA_OUTPUT_RMCONLY); // For parsing data, we don't suggest using anything but either RMC only or RMC+GGA since // the parser doesn't care about other sentences at this time // Set the update rate GPS.sendCommand(PMTK_SET_NMEA_UPDATE_1HZ); // 1 Hz update rate // For the parsing code to work nicely and have time to sort thru the data, and // print it out we don't suggest using anything higher than 1 Hz compass.init(); compass.enableDefault(); // Calibration values. Use the Calibrate example program to get the values for // your compass. compass.m_min.x = -581; compass.m_min.y = -731; compass.m_min.z = -1097; compass.m_max.x = +615; compass.m_max.y = +470; compass.m_max.z = 505; delay(1000); // Ask for firmware version Serial1.println(PMTK_Q_RELEASE); strip.begin(); strip.show(); // Initialize all pixels to 'off' } uint32_t timer = millis(); void loop() // run over and over again { // read data from the GPS in the 'main loop' char c = GPS.read(); // if you want to debug, this is a good time to do it! if (GPSECHO) if (c) Serial.print(c); // if a sentence is received, we can check the checksum, parse it... if (GPS.newNMEAreceived()) { // a tricky thing here is if we print the NMEA sentence, or data // we end up not listening and catching other sentences! // so be very wary if using OUTPUT_ALLDATA and trytng to print out data //Serial.println(GPS.lastNMEA()); // this also sets the newNMEAreceived() flag to false if (!GPS.parse(GPS.lastNMEA())) // this also sets the newNMEAreceived() flag to false return; // we can fail to parse a sentence in which case we should just wait for another } // if millis() or timer wraps around, we'll just reset it if (timer > millis()) timer = millis(); // every 300 milliseconds, update the heading/distance indicators if (millis() - timer > 300) { timer = millis(); // reset the timer //Serial.print("\nTime: "); //Serial.print(GPS.hour, DEC); Serial.print(':'); //Serial.print(GPS.minute, DEC); Serial.print(':'); //Serial.print(GPS.seconds, DEC); Serial.print('.'); //Serial.println(GPS.milliseconds); //Serial.print("Date: "); //Serial.print(GPS.day, DEC); Serial.print('/'); //Serial.print(GPS.month, DEC); Serial.print("/20"); //Serial.println(GPS.year, DEC); //Serial.print("Fix: "); Serial.print((int)GPS.fix); //Serial.print(" quality: "); Serial.println((int)GPS.fixquality); if (GPS.fix) { Serial.print("GPS FIX"); //Serial.print("Location: "); //Serial.print(GPS.latitude, 2); Serial.print(GPS.lat); //Serial.print(", "); //Serial.print(GPS.longitude, 2); Serial.println(GPS.lon); float fLat = decimalDegrees(GPS.latitude, GPS.lat); float fLon = decimalDegrees(GPS.longitude, GPS.lon); int closest_loc = find_closest_location(fLat, fLon); float targetLat = pgm_read_float(&lat_lon[closest_loc][0]); float targetLon = pgm_read_float(&lat_lon[closest_loc][1]); //Serial.print("Speed (knots): "); Serial.println(GPS.speed); //Serial.print("Angle: "); Serial.println(GPS.angle); //Serial.print("Altitude: "); Serial.println(GPS.altitude); //Serial.print("Satellites: "); Serial.println((int)GPS.satellites); compass.read(); int heading = compass.heading((LSM303::vector<int16_t>){0,-1,0}); Serial.print("Heading: "); Serial.println(heading); if ((calc_bearing(fLat, fLon, targetLat, targetLon) - heading) > 0) { headingDirection(calc_bearing(fLat, fLon, targetLat, targetLon)-heading); } else { headingDirection(calc_bearing(fLat, fLon, targetLat, targetLon)-heading+360); } //headingDistance((double)calc_dist(fLat, fLon, targetLat, targetLon)); //Serial.print("Distance Remaining:"); Serial.println((double)calc_dist(fLat, fLon, targetLat, targetLon)); } } } int calc_bearing(float flat1, float flon1, float flat2, float flon2) { float calc; float bear_calc; float x = 69.1 * (flat2 - flat1); float y = 69.1 * (flon2 - flon1) * cos(flat1/57.3); calc=atan2(y,x); bear_calc= degrees(calc); if(bear_calc<=1){ bear_calc=360+bear_calc; } return bear_calc; } void headingDirection(float heading) { //Use this part of the code to determine which way you need to go. //Remember: this is not the direction you are heading, it is the direction to the destination (north = forward). if ((heading > 348.75)||(heading < 11.25)) { Serial.println(" N"); //Serial.println("Forward"); GoForward(strip.Color(16, 247, 206), 200); } if ((heading >= 11.25)&&(heading < 33.75)) { Serial.println("NNE"); //Serial.println("Go Right"); TurnRight(strip.Color(16, 247, 206), 200); } if ((heading >= 33.75)&&(heading < 56.25)) { Serial.println(" NE"); //Serial.println("Go Right"); TurnRight(strip.Color(16, 247, 206), 200); } if ((heading >= 56.25)&&(heading < 78.75)) { Serial.println("ENE"); //Serial.println("Go Right"); TurnRight(strip.Color(16, 247, 206), 200); } if ((heading >= 78.75)&&(heading < 101.25)) { Serial.println(" E"); //Serial.println("Go Right"); TurnRight(strip.Color(16, 247, 206), 200); } if ((heading >= 101.25)&&(heading < 123.75)) { Serial.println("ESE"); //Serial.println("Go Right"); TurnRight(strip.Color(16, 247, 206), 200); } if ((heading >= 123.75)&&(heading < 146.25)) { Serial.println(" SE"); //Serial.println("Go Right"); TurnRight(strip.Color(16, 247, 206), 200); } if ((heading >= 146.25)&&(heading < 168.75)) { Serial.println("SSE"); //Serial.println("Go Right"); TurnRight(strip.Color(16, 247, 206), 200); } if ((heading >= 168.75)&&(heading < 191.25)) { Serial.println(" S"); //Serial.println("Turn Around"); TurnAround(strip.Color(247, 16, 70), 200); } if ((heading >= 191.25)&&(heading < 213.75)) { Serial.println("SSW"); //Serial.println("Go Left"); TurnLeft(strip.Color(16, 247, 206), 200); } if ((heading >= 213.75)&&(heading < 236.25)) { Serial.println(" SW"); //Serial.println("Go Left"); TurnLeft(strip.Color(16, 247, 206), 200); } if ((heading >= 236.25)&&(heading < 258.75)) { Serial.println("WSW"); //Serial.println("Go Left"); TurnLeft(strip.Color(16, 247, 206), 200); } if ((heading >= 258.75)&&(heading < 281.25)) { Serial.println(" W"); //Serial.println("Go Left"); TurnLeft(strip.Color(16, 247, 206), 200); } if ((heading >= 281.25)&&(heading < 303.75)) { Serial.println("WNW"); //Serial.println("Go Left"); TurnLeft(strip.Color(16, 247, 206), 200); } if ((heading >= 303.75)&&(heading < 326.25)) { Serial.println(" NW"); //Serial.println("Go Left"); TurnLeft(strip.Color(16, 247, 206), 200); } if ((heading >= 326.25)&&(heading < 348.75)) { Serial.println("NWN"); //Serial.println("Go Left"); TurnLeft(strip.Color(16, 247, 206), 200); } } unsigned long calc_dist(float flat1, float flon1, float flat2, float flon2) { float dist_calc=0; float dist_calc2=0; float diflat=0; float diflon=0; diflat=radians(flat2-flat1); flat1=radians(flat1); flat2=radians(flat2); diflon=radians((flon2)-(flon1)); dist_calc = (sin(diflat/2.0)*sin(diflat/2.0)); dist_calc2= cos(flat1); dist_calc2*=cos(flat2); dist_calc2*=sin(diflon/2.0); dist_calc2*=sin(diflon/2.0); dist_calc +=dist_calc2; dist_calc=(2*atan2(sqrt(dist_calc),sqrt(1.0-dist_calc))); dist_calc*=6371000.0; //Converting to meters return dist_calc; } //returns the location in the lat_lon array of the closest lat lon to the current location int find_closest_location(float current_lat, float current_lon) { int closest = 0; signed long minDistance = -1; signed long tempDistance; for (int i=0; i < LAT_LON_SIZE; i++) { float target_lat = pgm_read_float(&lat_lon[i][0]); float target_lon = pgm_read_float(&lat_lon[i][1]); tempDistance = calc_dist(current_lat, current_lon, target_lat, target_lon); /* Serial.print("current_lat: "); Serial.println(current_lat, 6); Serial.print("current_lon: "); Serial.println(current_lon, 6); Serial.print("target_lat: "); Serial.println(target_lat, 6); Serial.print("target_lon: "); Serial.println(target_lon, 6); Serial.print("tempDistance: "); Serial.println(tempDistance); Serial.print("Array Loc: "); Serial.println(i); */ if ((minDistance > tempDistance) || (minDistance == -1)) { minDistance = tempDistance; closest = i; } } return closest; } // Convert NMEA coordinate to decimal degrees float decimalDegrees(float nmeaCoord, char dir) { uint16_t wholeDegrees = 0.01*nmeaCoord; int modifier = 1; if (dir == 'W' || dir == 'S') { modifier = -1; } return (wholeDegrees + (nmeaCoord - 100.0*wholeDegrees)/60.0) * modifier; } void TurnLeft (uint32_t c, uint8_t wait) { strip.setPixelColor(CenterRight, 0); strip.setPixelColor(CenterLeft, 0); strip.setPixelColor(FarLeft, c); strip.show(); delay(wait); strip.setPixelColor(FarLeft, 0); strip.show(); delay(wait); } void TurnRight (uint32_t c, uint8_t wait) { strip.setPixelColor(CenterRight, 0); strip.setPixelColor(CenterLeft, 0); strip.setPixelColor(FarRight, c); strip.show(); delay(wait); strip.setPixelColor(FarRight, 0); strip.show(); delay(wait); } void TurnAround (uint32_t c, uint8_t wait) { strip.setPixelColor(CenterRight, c); strip.setPixelColor(CenterLeft, c); strip.show(); delay(wait); strip.setPixelColor(CenterRight, 0); strip.setPixelColor(CenterLeft, 0); strip.show(); delay(wait); } void GoForward (uint32_t c, uint8_t wait) { strip.setPixelColor(CenterRight, c); strip.setPixelColor(CenterLeft, c); strip.show(); delay(wait); } // Slightly different, this makes the rainbow equally distributed throughout void rainbowCycle(uint8_t wait) { uint16_t i; //for(j=0; j<256*5; j++) { // 5 cycles of all colors on wheel for(i=0; i< 10; i++) { strip.setPixelColor(RightStrip[i], Wheel(((i * 256 / 10) + counter) & 255)); strip.setPixelColor(RightCenterStrip[i], Wheel(((i * 256 / 10) + counter) & 255)); strip.setPixelColor(LeftCenterStrip[i], Wheel(((i * 256 / 10) + counter) & 255)); strip.setPixelColor(LeftStrip[i], Wheel(((i * 256 / 10) + counter) & 255)); } counter = counter+25; if (counter >256*5) {counter = 0;} strip.show(); delay(wait); //} } // Input a value 0 to 255 to get a color value. // The colours are a transition r - g - b - back to r. uint32_t Wheel(byte WheelPos) { if(WheelPos < 85) { return strip.Color(WheelPos * 3, 255 - WheelPos * 3, 0); } else if(WheelPos < 170) { WheelPos -= 85; return strip.Color(255 - WheelPos * 3, 0, WheelPos * 3); } else { WheelPos -= 170; return strip.Color(0, WheelPos * 3, 255 - WheelPos * 3); } }
float lat_lon[LAT_LON_SIZE][2] PROGMEM = { {40.767272, -73.993928}, {40.719115, -74.006666}, {40.711174, -74.000165},
// Change the first # to match the # of LEDs in your strip -- we have 45 LEDs Adafruit_NeoPixel strip = Adafruit_NeoPixel(45, 6, NEO_GRB + NEO_KHZ800); int FarRight = 9; int CenterRight = 10; int CenterLeft = 34; int FarLeft = 35; int HeadsUp[] = {35, 34, 10, 9}; int RightStrip[] = {8, 7, 6, 5, 4, 3, 2, 1, 0}; int RightCenterStrip[] = {11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}; int LeftCenterStrip[] = {33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23}; int LeftStrip[] = {36, 37, 38, 39, 40, 41, 42, 43, 44}; int counter = 0;
In the setup function, you will find a section that deals with calibrating the FLORA compass module.
// Calibration values. Use the Calibrate example program to get the values for // your compass. compass.m_min.x = -581; compass.m_min.y = -731; compass.m_min.z = -1097; compass.m_max.x = +615; compass.m_max.y = +470; compass.m_max.z = 505;
Thats about all you need to know to get started. Upload the code to your FLORA, and you are ready to hit the road.
#include <Adafruit_NeoPixel.h> #include <LSM303.h> // Test code for Adafruit Flora GPS modules // // This code shows how to listen to the GPS module in an interrupt // which allows the program to have more 'freedom' - just parse // when a new NMEA sentence is available! Then access data when // desired. // // Tested and works great with the Adafruit Flora GPS module // ------> http://adafruit.com/products/1059 // Pick one up today at the Adafruit electronics shop // and help support open source hardware & software! -ada Adafruit_NeoPixel strip = Adafruit_NeoPixel(45, 6, NEO_GRB + NEO_KHZ800); int FarRight = 9; int CenterRight = 10; int CenterLeft = 34; int FarLeft = 35; int HeadsUp[] = {35, 34, 10, 9}; int RightStrip[] = {46, 8, 7, 6, 5, 4, 3, 2, 1, 0, 46}; int RightCenterStrip[] = {11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}; int LeftCenterStrip[] = {33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23}; int LeftStrip[] = {46, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46}; int counter = 256*5; #include <Wire.h> #include <LSM303.h> LSM303 compass; void setup() { Serial.begin(9600); Wire.begin(); compass.init(); compass.enableDefault(); strip.begin(); strip.show(); // Initialize all pixels to 'off' // Calibration values. Use the Calibrate example program to get the values for // your compass. M min X: -561 Y: -679 Z: -558 M max X: 232 Y: 109 Z: 224 compass.m_min.x = -561; compass.m_min.y = -679; compass.m_min.z = -558; compass.m_max.x = 232; compass.m_max.y = 109; compass.m_max.z = 224; } void loop() { compass.read(); int heading = compass.heading((LSM303::vector){0,-1,0}); //Use this part of the code to determine which way you need to go. if ((heading > 348.75)||(heading < 11.25)) { Serial.println(" N"); //Serial.println("Forward"); GoForward(strip.Color(0, 51, 20), strip.Color(255, 255, 0), 200); } if ((heading >= 11.25)&&(heading < 33.75)) { Serial.println("NNE"); //Serial.println("Go Left"); GoForward(strip.Color(0, 51, 10), strip.Color(255, 255, 0), 200); } if ((heading >= 33.75)&&(heading < 56.25)) { Serial.println(" NE"); //Serial.println("Go Left"); TurnLeft(strip.Color(11, 79, 0), strip.Color(255, 255, 0), 200); } if ((heading >= 56.25)&&(heading < 78.75)) { Serial.println("ENE"); //Serial.println("Go Left"); TurnLeft(strip.Color(39, 79, 0), strip.Color(255, 255, 0), 200); } if ((heading >= 78.75)&&(heading < 101.25)) { Serial.println(" E"); //Serial.println("Go Left"); TurnLeft(strip.Color(74, 79, 0), strip.Color(255, 255, 0), 200); } if ((heading >= 101.25)&&(heading < 123.75)) { Serial.println("ESE"); //Serial.println("Go Left"); TurnLeft(strip.Color(74, 79, 0), strip.Color(255, 255, 0), 200); } if ((heading >= 123.75)&&(heading < 146.25)) { Serial.println(" SE"); //Serial.println("Go Left"); TurnLeft(strip.Color(79, 61, 0), strip.Color(255, 255, 0), 200); } if ((heading >= 146.25)&&(heading < 168.75)) { Serial.println("SSE"); //Serial.println("Go Left"); TurnAround(strip.Color(79, 61, 0), strip.Color(255, 255, 0), 200); } if ((heading >= 168.75)&&(heading < 191.25)) { Serial.println(" S"); //Serial.println("Turn Around"); TurnAround(strip.Color(79, 32, 0), strip.Color(255, 255, 0), 200); } if ((heading >= 191.25)&&(heading < 213.75)) { Serial.println("SSW"); //Serial.println("Go Right"); TurnAround(strip.Color(79, 61, 0), strip.Color(255, 255, 0), 200); } if ((heading >= 213.75)&&(heading < 236.25)) { Serial.println(" SW"); //Serial.println("Go Right"); TurnRight(strip.Color(79, 61, 0), strip.Color(255, 255, 0), 200); } if ((heading >= 236.25)&&(heading < 258.75)) { Serial.println("WSW"); //Serial.println("Go Right"); TurnRight(strip.Color(74, 79, 0), strip.Color(255, 255, 0), 200); } if ((heading >= 258.75)&&(heading < 281.25)) { Serial.println(" W"); //Serial.println("Go Right"); TurnRight(strip.Color(74, 79, 0), strip.Color(255, 255, 0), 200); } if ((heading >= 281.25)&&(heading < 303.75)) { Serial.println("WNW"); //Serial.println("Go Right"); TurnRight(strip.Color(39, 79, 0), strip.Color(255, 255, 0), 200); } if ((heading >= 303.75)&&(heading < 326.25)) { Serial.println(" NW"); //Serial.println("Go Right"); TurnRight(strip.Color(11, 79, 0), strip.Color(255, 255, 0), 200); } if ((heading >= 326.25)&&(heading < 348.75)) { Serial.println("NWN"); //Serial.println("Go Right"); GoForward(strip.Color(0, 51, 10), strip.Color(255, 255, 0), 200); } } void TurnLeft (uint32_t c, uint32_t stripe, uint8_t wait) { strip.setPixelColor(CenterRight, 0); strip.setPixelColor(CenterLeft, 0); strip.setPixelColor(FarLeft, c); strip.show(); for(uint16_t i=0; i<11; i++) { strip.setPixelColor(LeftCenterStrip[i], strip.Color(0, 0, 0)); strip.setPixelColor(LeftStrip[i], strip.Color(0, 0, 0)); strip.show(); delay(30); } //delay(wait); strip.setPixelColor(FarLeft, 0); strip.show(); colorWipe(stripe, 30); //delay(wait); } void TurnRight (uint32_t c, uint32_t stripe, uint8_t wait) { strip.setPixelColor(CenterRight, 0); strip.setPixelColor(CenterLeft, 0); strip.setPixelColor(FarRight, c); strip.show(); for(uint16_t i=0; i<11; i++) { strip.setPixelColor(RightCenterStrip[i], strip.Color(0, 0, 0)); strip.setPixelColor(RightStrip[i], strip.Color(0, 0, 0)); strip.show(); delay(30); } //delay(wait); strip.setPixelColor(FarRight, 0); strip.show(); colorWipe(stripe, 30); //delay(wait); } void TurnAround (uint32_t c, uint32_t stripe, uint8_t wait) { strip.setPixelColor(CenterRight, c); strip.setPixelColor(CenterLeft, c); strip.show(); for(uint16_t i=0; i<11; i++) { strip.setPixelColor(LeftCenterStrip[i], strip.Color(0, 0, 0)); strip.setPixelColor(RightCenterStrip[i], strip.Color(0, 0, 0)); strip.show(); delay(30); } //delay(wait); strip.setPixelColor(CenterRight, 0); strip.setPixelColor(CenterLeft, 0); strip.show(); colorWipe(stripe, 30); //delay(wait); } void GoForward (uint32_t c, uint32_t stripe, uint8_t wait) { strip.setPixelColor(CenterRight, c); strip.setPixelColor(CenterLeft, c); strip.show(); for(uint16_t i=0; i<11; i++) { strip.setPixelColor(LeftCenterStrip[i], strip.Color(0, 0, 0)); strip.setPixelColor(RightCenterStrip[i], strip.Color(0, 0, 0)); strip.show(); delay(30); } colorWipe(stripe, 30); //delay(wait); } // Slightly different, this makes the rainbow equally distributed throughout void colorWipe(uint32_t c, uint8_t wait) { for(uint16_t i=0; i<11; i++) { strip.setPixelColor(LeftCenterStrip[i], strip.Color(255, 255/i^16, 255/i^16)); strip.setPixelColor(RightCenterStrip[i], strip.Color(255, 255/i^16, 255/i^16)); strip.setPixelColor(RightStrip[i], strip.Color(255, 255/i^16, 255/i^16)); strip.setPixelColor(LeftStrip[i], strip.Color(255, 255/i^16, 255/i^16)); strip.show(); delay(wait); } } // Input a value 0 to 255 to get a color value. // The colours are a transition r - g - b - back to r. uint32_t Wheel(byte WheelPos) { if(WheelPos < 85) { return strip.Color(WheelPos * 3, 255 - WheelPos * 3, 0); } else if(WheelPos < 170) { WheelPos -= 85; return strip.Color(255 - WheelPos * 3, 0, WheelPos * 3); } else { WheelPos -= 170; return strip.Color(0, WheelPos * 3, 255 - WheelPos * 3); } }
Wear it!
Optional: Generating Coordinates
Another reason you may want to re-generate coordinates is so you can use the bike share system in your city with the helmet! It isn't limited to the NYC Citi Bike system.
The below code will parse the wonderful citybik.es api:
var request = require('request'); var BIKE_SHARE_URL = 'http://api.citybik.es/citibikenyc.json'; request(BIKE_SHARE_URL, function (error, response, body) { if (!error && response.statusCode == 200) { var comma = ","; var locations = JSON.parse(body); locations.forEach(function(l, i) { if (i === locations.length-1) comma = ""; console.log(" {" + (l.lat / 1000000).toFixed(6) + ", " + (l.lng / 1000000).toFixed(6) + "}" + comma); }); console.log(locations.length); } });
To start with, you'll need node.js. It's a really easy install. Navigate to http://nodejs.org, and follow the installation instructions for your operating system (Windows, Linux, and OS X are supported).
Next, create a folder somewhere (mine is titled 'cityparser'). Then, create a file in that folder titled parser.js and copy and paste the above snippet of code into that file, and save it.
Now, open your favorite command line utility (Terminal.app, cmd.exe, etc) and navigate into the 'cityparser' folder.
Now, we need to install the one dependency that is required for the parser to run. Execute the following from within the cityparser folder:
npm install request
Execute the following command to run the parser:
node parser.js
For example, these are the last few of my output:
{40.715348, -73.960241}, {40.741472, -73.983209}, {40.736502, -73.978094}, {40.744449, -73.983035}, {40.702550, -73.989402}, {40.698920, -73.973329}, {40.716887, -73.963198}, {40.734160, -73.980242}, {40.725500, -74.004451}, {40.705311, -73.971000}, {40.765909, -73.976341} 311
Open the citybik.es api page, and scroll down to the section titled "System" and "JSON". Choose your location from the dropdown, and then replace it in the parser.js file variable "BIKE_SHARE_URL" and re-run the program.
Ok, now to set up your sketch. The last number in the results is the count of locations in that bike share. Take that number and place it in the sketch for the size of the array:
#define LAT_LON_SIZE 311
float lat_lon[LAT_LON_SIZE][2] PROGMEM = { {40.767272, -73.993928}, {40.719115, -74.006666}, {40.711174, -74.000165}, {40.683826, -73.976323}, {40.702550, -73.989402}, {40.698920, -73.973329}, {40.716887, -73.963198}, {40.734160, -73.980242}, {40.725500, -74.004451}, {40.705311, -73.971000}, {40.765909, -73.976341} };
This guide was first published on Jun 19, 2013. It was last updated on Jun 19, 2013.