This guide describes using CircuitPython -libraries- on small Linux computers, running under regular Python. It is not about running the CircuitPython firmware itself on those boards.

Here at Adafruit we're always looking for ways to make making easier - whether that's making breakout boards for hard-to-solder sensors or writing libraries to simplify motor control. Our new favorite way to program is CircuitPython.

Why CircuitPython?

CircuitPython is a variant of MicroPython, a very small version of Python that can fit on a microcontroller. Python is the fastest-growing programming language. It's taught in schools, used in coding bootcamps, popular with scientists and of course programmers at companies use it a lot!

CircuitPython adds the Circuit part to the Python part. It lets you program in Python and talk to Circuitry like sensors, motors, and LEDs!

CircuitPython on Microcontrollers

CircuitPython runs on microcontroller boards, such as our Feather, Metro, QT Py, and ItsyBitsy boards, using a variety of chips, such as the MicroChip SAMD21 SAMD51, the Raspberry Pi RP2040, the Nordic nRF52840, and the Espressif ESP32-S2 and ESP32-S3.

All of these chips have something in common - they are microcontrollers with hardware peripherals like SPI, I2C, ADCs etc. We squeeze Python into 'em and can then make the project portable.

But...sometimes you want to do more than a microcontroller can do. Like HDMI video output, or camera capture, or serving up a website, or just something that takes more memory and computing than a microcontroller board can do...

CircuitPython Libraries on Desktop Linux

By adding a software layer, you can use CircuitPython hardware control capabilities with "regular Python", as found on your desktop or single-board Linux computer/ There are tons of projects, libraries and example code for CircuitPython on microcontrollers, and thanks to the flexibility and power of Python its' pretty easy to get that code working on micro-computers like the Raspberry Pi or other single-board Linux computers with GPIO pins available.

You'll use a special library called adafruit_blinka (named after Blinka, the CircuitPython mascot) that provides a layer that translates the CircuitPython hardware API to whatever library the Linux board provides. For example, on Raspberry Pi we use the python RPi.GPIO library. For any I2C interfacing we'll use ioctl messages to the /dev/i2c device. For SPI we'll use the spidev python library, etc. These details don't matter so much because they all happen underneath the adafruit_blinka layer.

The upshot is that most code we write for CircuitPython will be instantly and easily runnable on Linux computers like Raspberry Pi.

In particular, you'll be able to use all of our device drivers - the sensors, led controllers, motor drivers, HATs, bonnets, etc. And nearly all of these use I2C or SPI!

The rest of this guide describes how to install and set up Blinka, and then how to use it to run CircuitPython code to control hardware.

There are two parts to the CircuitPython ecosystem:

  • CircuitPython firmware, written in C and built to run on various microcontroller boards (not PCs). The firmware includes the CircuitPython interpreter, which reads and executes CircuitPython programs, and chip-specific code that controls the hardware peripherals on the microcontroller, including things like USB, I2C, SPI, GPIO pins, and all the rest of the hardware features the chip provides.
  • CircuitPython libraries, written in Python to use the native (built into the firmware) modules provided by CircuitPython to control the microcontroller peripherals and interact with various breakout boards.

But suppose you'd like to use CircuitPython libraries on a board or computer that does not have a native CircuitPython firmware build. For example, on a PC running Windows or macOS. Can that be done? The answer is yes, via a separate piece of software called Blinka. Details about Blinka follow, however it is important to realize that the CircuitPython firmware is never used.

CircuitPython firmware is NOT used when using Blinka.

Adafruit Blinka: a CircuitPython Compatibility Library

Enter Adafruit Blinka. Blinka is a software library that emulates the parts of CircuitPython that control hardware. Blinka provides non-CircuitPython implementations for board, busio, digitalio, and other native CircuitPython modules. You can then write Python code that looks like CircuitPython and uses CircuitPython libraries, without having CircuitPython underneath.

There are multiple ways to use Blinka: 

  • Linux based Single Board Computers, for example a Raspberry Pi
  • Desktop Computers + specialized USB adapters
  • Boards running MicroPython

More details on these options follow.

Raspberry Pi and Other Single-Board Linux Computers

On a Raspberry Pi or other single-board Linux computer, you can use Blinka with the regular version of Python supplied with the Linux distribution. Blinka can control the hardware pins these boards provide.

Desktop Computers 

On Windows, macOS, or Linux desktop or laptop ("host") computers, you can use special USB adapter boards that that provide hardware pins you can control. These boards include MCP221A and FT232H breakout boards, and Raspberry Pi Pico boards running the u2if software. These boards connect via regular USB to your host computer, and let you do GPIO, I2C, SPI, and other hardware operations.

MicroPython

You can also use Blinka with MicroPython, on MicroPython-supported boards. Blinka will allow you to import and use CircuitPython libraries in your MicroPython program, so you don't have to rewrite libraries into native MicroPython code. Fun fact - this is actually the original use case for Blinka.

Installing Blinka

Installing Blinka on your particular platform is covered elsewhere in this guide. The process is different for each platform. Follow the guide section specific to your platform and make sure Blinka is properly installed before attempting to install any libraries.

Be sure to install Blinka before proceeding.

Installing CircuitPython Libraries

Once Blinka is installed the next step is to install the CircuitPython libraries of interest. How this is down is different for each platform. Here are the details.

Linux Single-Board Computers

On Linux single-board computers, such as Raspberry Pi, you'll use the Python pip3 program (sometimes named just pip) to install a library. The library will be downloaded from pypi.org automatically by pip3.

How to install a particular library using pip3 is covered in the guide page for that library. For example, here is the pip3 installation information for the library for the LIS3DH accelerometer.

The library name you give to pip3 is usually of the form adafruit-circuitpython-libraryname. This is not the name you use with import. For example, the LIS3DH sensor library is known by several names:

  • The GitHub library repository is Adafruit_CircuitPython_LIS3DH.
  • When you import the library, you write import adafruit_lis3dh.
  • The name you use with pip3 is adafruit-circuitpython-lis3dh. This the name used on pypi.org.

Libraries often depend on other libraries. When you install a library with pip3, it will automatically install other needed libraries.

Desktop Computers using a USB Adapter

When you use a desktop computer with a USB adapter, like the MCP2221A, FT232H, or u2if firmware on an RP2040, you will also use pip3. However, do not install the library with sudo pip3, as mentioned in some guides. Instead, just install with pip3

MicroPython

For MicroPython, you will not use pip3. Instead you can get the library from the CircuitPython bundles. See this guide page for more information about the bundles, and also see the Libraries page on circuitPython.org.

CircuitPython Libraries on Linux & Raspberry Pi

The next obvious step is to bring CircuitPython back to 'desktop Python'. We've got tons of projects, libraries and example code for CircuitPython on microcontrollers, and thanks to the flexibility and power of Python it's pretty easy to get that code working with micro-computers like Raspberry Pi or other 'Linux with GPIO pins available' single board computers.

We are not running the CircuitPython interpreter itself on the Linux machine. But we are running Python code written to use the CircuitPython hardware API (busio.I2C, busio.SPI, etc.)

We'll use a special library called adafruit_blinka (named after Blinka, the CircuitPython mascot) to provide the layer that translates the CircuitPython hardware API to whatever library the Linux board provides. For example, on Raspberry Pi we use the python RPi.GPIO library. For any I2C interfacing we'll use ioctl messages to the /dev/i2c device. For SPI we'll use the spidev python library, etc. These details don't matter so much because they all happen underneath the adafruit_blinka layer.

The upshot is that any code we have for CircuitPython will be instantly and easily runnable on Linux computers like Raspberry Pi.

In particular, we'll be able to use all of our device drivers - the sensors, led controllers, motor drivers, HATs, bonnets, etc. And nearly all of these use I2C or SPI!

 

Wait, isn't there already something that does this - GPIO Zero?

Yes! We like and use GPIO Zero a lot, its an excellent hardware interfacing library for Raspberry Pi. It's great for digital in/out, analog inputs, servos, some basic sensors, etc. In particular, one cool thing it does is thread/event management so you can have code run, say, when a button is pressed.

GPIO Zero excels at that, but doesn't cover SPI/I2C sensors or drivers, which is where we got stuck: for each sensor we had we'd write a driver in C/C++ for Arduino, CircuitPython using our hardware API, and then Python using smbus or similar.

By letting you use CircuitPython on Raspberry Pi via adafruit_blinka, you can unlock all of the drivers and example code we wrote! And you can keep using GPIO Zero for pins, buttons and LEDs. We save time and effort so we can focus on getting code that works in one place, and you get to reuse all the code we've written already.

What about other Linux SBCs?

Plus, we're adapting and extending adafruit_blinka to support other boards such as Allwinners and BeagleBone, even some smaller linux boards like Onion.io will be able to run CircuitPython code.

If you have a board you'd like to adapt check out the adafruit_blinka code on github, pull requests are welcome as there's a ton of different Linux boards out there! You'll need to add a detection element so we can tell what board you're running on, then the pin definitions into adafruit_blinka above. As long as you're running a modern kernel, you'll have libgpiod for GPIO, smbus for I2C and spidev for SPI all ready to go.

CircuitPython libraries and adafruit-blinka will work on any Raspberry Pi board! That means the original 1, the Pi 2, Pi 3, Pi 4, Pi 5, Pi Zero, Pi Zero 2 W, or even the compute modules.
At this time, Blinka requires Python version 3.7 or later, which means you will need to at least be running Raspberry Pi OS Bullseye.

Prerequisite Pi Setup!

In this page we'll assume you've already gotten your Raspberry Pi up and running and can log into the command line

Here's the quick-start for people with some experience:

  1. Download the latest Raspberry Pi OS or Raspberry Pi OS Lite to your computer
  2. Burn the OS image to your MicroSD card using your computer
  3. Re-plug the SD card into your computer (don't use your Pi yet!) and set up your wifi connection by editing supplicant.conf
  4. Activate SSH support
  5. Plug the SD card into the Pi
  6. If you have an HDMI monitor we recommend connecting it so you can see that the Pi is booting OK
  7. Plug in power to the Pi - you will see the green LED flicker a little. The Pi will reboot while it sets up so wait a good 10 minutes
  8. If you are running Windows on your computer, install Bonjour support so you can use .local names, you'll need to reboot Windows after installation
  9. You can then ssh into raspberrypi.local

The Pi Foundation has tons of guides as well

We really really recommend the latest Raspberry Pi OS only. If you have an older Raspberry Pi OS install, run "sudo apt-get update" and "sudo apt-get upgrade" to get the latest OS!

Update Your Pi and Python

Run the standard updates:

sudo apt-get update
sudo apt-get upgrade
sudo apt-get install python3-pip

and upgrade setuptools:

sudo apt install --upgrade python3-setuptools
Python2 support has been dropped, so you will need to either use pip3 and python3 as commands or set Python 3 as the default python install.
You may need to reboot prior to installing Blinka. The raspi-blinka.py script will inform you if it is necessary.
If you are installing in a virtual environment, the installer may not work correctly since it requires sudo. We recommend using pip to manually install it in that case.

Setup Virtual Environment

If you are installing on the Bookworm version of Raspberry Pi OS, you will need to install your python modules in a virtual environment. You can find more information in the Python Virtual Environment Usage on Raspberry Pi guide. To Install and activate the virtual environment, use the following commands:

sudo apt install python3.11-venv
python -m venv env --system-site-packages

You will need to activate the virtual environment every time the Pi is rebooted. To activate it:

source env/bin/activate

To deactivate, you can use deactivate, but leave it active for now.

Automated Install

We put together a script to easily make sure your Pi is correctly configured and install Blinka. It requires just a few commands to run. Most of it is installing the dependencies.

cd ~
pip3 install --upgrade adafruit-python-shell
wget https://raw.githubusercontent.com/adafruit/Raspberry-Pi-Installer-Scripts/master/raspi-blinka.py
sudo -E env PATH=$PATH python3 raspi-blinka.py

If you are installing on an earlier version such as Bullseye of Raspberry Pi OS, you can call the script like:

sudo python3 raspi-blinka.py

If you are installing an older version of Raspberry Pi OS, your system default Python is likely Python 2. If so, it will ask to confirm that you want to proceed. Choose yes.

It may take a few minutes to run. When it finishes, it will ask you if you would like to reboot. Choose yes.

Once it reboots, the connection will close. After a couple of minutes, you can reconnect.

Manual Install

If you are having trouble running the automated installation script, you can follow these steps to manually install Blinka.

Enable Interfaces

Run these commands to enable the various interfaces such as I2C and SPI:

sudo raspi-config nonint do_i2c 0
sudo raspi-config nonint do_spi 0
sudo raspi-config nonint do_serial_hw 0
sudo raspi-config nonint do_ssh 0
sudo raspi-config nonint do_camera 0
sudo raspi-config nonint disable_raspi_config_at_boot 0

Install Blinka and Dependencies

Blinka needs a few dependencies installed:

sudo apt-get install -y i2c-tools libgpiod-dev python3-libgpiod
pip3 install --upgrade RPi.GPIO
pip3 install --upgrade adafruit-blinka

Check I2C and SPI

The script will automatically enable I2C and SPI. You can run the following command to verify:

ls /dev/i2c* /dev/spi*

You should see the response

/dev/i2c-1 /dev/spidev0.0 /dev/spidev0.1

Fixing CE0 and CE1 Device or Resource Busy Issue

In order to use the CE0 and CE1 pins in Python, you will need to disable them from OS usage. To do so, check out the Reassigning or Disabling the SPI Chip Enable Lines section of this guide.

Enabling Second SPI

If you are using the main SPI port for a display or something and need another hardware SPI port, you can enable it by adding the line

dtoverlay=spi1-3cs

to the bottom of /boot/config.txt and rebooting. You'll then see the addition of some /dev/spidev1.x devices:

Blinka Test

If onewire is enabled, you may need to use another digital input besides D4.

Create a new file called blinkatest.py with nano or your favorite text editor and put the following in:

import board
import digitalio
import busio

print("Hello, blinka!")

# Try to create a Digital input
pin = digitalio.DigitalInOut(board.D4)
print("Digital IO ok!")

# Try to create an I2C device
i2c = busio.I2C(board.SCL, board.SDA)
print("I2C ok!")

# Try to create an SPI device
spi = busio.SPI(board.SCLK, board.MOSI, board.MISO)
print("SPI ok!")

print("done!")

Save it and run at the command line with:

python3 blinkatest.py

You should see the following, indicating digital i/o, I2C and SPI all worked.

The first step with any new hardware is the 'hello world' of electronics - blinking an LED. This is very easy with CircuitPython and Raspberry Pi. We'll extend the example to also show how to wire up a button/switch and enable a pull-up resistor.

Even if you use a different library to create digital in/outs like GPIO Zero, there's a number of sensor libraries that use a digital pin for resetting, or for a chip-select. So it's good to have this part working!

Parts Used

Any old LED will work just fine as long as its not an IR LED (you can't see those) and a 470 to 2.2K resistor

Single large LED lit up blue
Need some big indicators? We are big fans of these huge diffused blue LEDs. They are really bright so they can be seen in daytime, and from any angle. They go easily into a breadboard...
$9.95
In Stock
Angled shot of 25 Through-Hole Resistors - 470 ohm 5% 1/4W.
ΩMG! You're not going to be able to resist these handy resistor packs! Well, axially, they do all of the resisting for you!This is a 25 Pack of...
$0.75
In Stock

Some tactile buttons or switches

Angled shot of 10 12mm square tactile switch buttons.
Medium-sized clicky momentary switches are standard input "buttons" on electronic projects. These work best in a PCB but
$2.50
In Stock

We recommend using a breadboard and some female-male wires.

Angled shot of Premium Female/Male 'Extension' Jumper Wires - 40 x 6 (150mm)
Handy for making wire harnesses or jumpering between headers on PCB's. These premium jumper wires are 6" (150mm) long and come in a 'strip' of 40 (4 pieces of each of...
$3.95
In Stock

You can use a Cobbler to make this a little easier, the pins are then labeled!

Angled shot of Assembled Pi T-Cobbler Plus next to GPIO ribbon cable
This is the assembled version of the Pi T-Cobbler Plus.  It only works with the Raspberry Pi Model Zero, A+, B+, Pi 2, Pi 3 & Pi 4! (Any Pi with 2x20...
$7.95
In Stock

Wiring

Connect the Raspberry Pi Ground pin to the blue ground rail on the breadboard.

  • Connect one side of the tactile switch to Raspberry Pi GPIO #4
  • Connect the other side of the tactile switch to the ground rail
  • Connect the longer/positive pin of the LED to Raspberry Pi GPIO #18
  • Connect the shorter/negative pin of the LED to a 470ohm  to 2.2K resistor, the other side of the resistor goes to ground rail

Double-check you have the right wires connected to the right location, it can be tough to keep track of Pi pins as there are forty of them!

No additional libraries are needed so we can go straight on to the example code

However, we recommend running a pip3 update!

pip3 install --upgrade adafruit_blinka

Blinky Time!

The finish line is right up ahead, lets start with an example that blinks the LED on and off once a second (half a second on, half a second off):

import time
import board
import digitalio

print("hello blinky!")

led = digitalio.DigitalInOut(board.D18)
led.direction = digitalio.Direction.OUTPUT

while True:
    led.value = True
    time.sleep(0.5)
    led.value = False
    time.sleep(0.5)

Verify the LED is blinking. If not, check that it's wired to GPIO #18, the resistor is installed correctly, and you have a Ground wire to the Raspberry Pi.

Type Control-C to quit

Button It Up

Now that you have the LED working, lets add code so the LED turns on whenever the button is pressed

import time
import board
import digitalio

print("press the button!")

led = digitalio.DigitalInOut(board.D18)
led.direction = digitalio.Direction.OUTPUT

button = digitalio.DigitalInOut(board.D4)
button.direction = digitalio.Direction.INPUT
button.pull = digitalio.Pull.UP

while True:
    led.value = not button.value # light when button is pressed!

Press the button - see that the LED lights up!

Type Control-C to quit

The most popular electronic sensors use I2C to communicate. This is a 'shared bus' 2 wire protocol, you can have multiple sensors connected to the two SDA and SCL pins as long as they have unique addresses (check this guide for a list of many popular devices and their addresses)

Lets show how to wire up a popular BME280. This sensor provides temperature, barometric pressure and humidity data over I2C

We're going to do this in a lot more depth than our guide pages for each sensor, but the overall technique is basically identical for any and all I2C sensors.

Honestly, the hardest part of using I2C devices is figuring out the I2C address and which pin is SDA and which pin is SCL!

Don't forget you have to enable I2C with raspi-config!

Parts Used

Adafruit BME280 I2C or SPI Temperature Humidity Pressure Sensor
Bosch has stepped up their game with their new BME280 sensor, an environmental sensor with temperature, barometric pressure and humidity! This sensor is great for all sorts...
$14.95
In Stock

We recommend using a breadboard and some female-male wires.

Angled shot of Premium Female/Male 'Extension' Jumper Wires - 40 x 6 (150mm)
Handy for making wire harnesses or jumpering between headers on PCB's. These premium jumper wires are 6" (150mm) long and come in a 'strip' of 40 (4 pieces of each of...
$3.95
In Stock

You can use a Cobbler to make this a little easier, the pins are then labeled!

Angled shot of Assembled Pi T-Cobbler Plus next to GPIO ribbon cable
This is the assembled version of the Pi T-Cobbler Plus.  It only works with the Raspberry Pi Model Zero, A+, B+, Pi 2, Pi 3 & Pi 4! (Any Pi with 2x20...
$7.95
In Stock

Wiring

  • Connect the Raspberry Pi 3.3V power pin to Vin
  • Connect the Raspberry Pi GND pin to GND
  • Connect the Pi SDA pin to the BME280 SDI
  • Connect the Pi SCL pin to to the BME280 SCK

Double-check you have the right wires connected to the right location, it can be tough to keep track of Pi pins as there are forty of them!

After wiring, we recommend running I2C detection to verify that you see the device, in this case its address 77

sudo i2cdetect -y 1

Install the CircuitPython BME280 Library

OK onto the good stuff, you can now install the Adafruit BME280 CircuitPython library.

As of this writing, not all libraries are up on PyPI so you may want to search before trying to install. Look for circuitpython and then the driver you want.

Once you know the name, install it with

pip3 install adafruit-circuitpython-bme280

You'll notice we also installed a dependancy called adafruit-circuitpython-busdevice. This is a great thing about pip, if you have other required libraries they'll get installed too!

We also recommend an adafruit-blinka update in case we've fixed bugs:

pip3 install --upgrade adafruit_blinka

Run that code!

The finish line is right up ahead. You can now run one of the (many in some cases) example scripts we've written for you.

Check out the examples for your library by visiting the repository for the library and looking in the example folder. In this case, it would be https://github.com/adafruit/Adafruit_CircuitPython_BME280/tree/master/examples

As of this writing there's only one example. But that's cool, here it is:

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
# SPDX-License-Identifier: MIT

import time
import board
from adafruit_bme280 import basic as adafruit_bme280

# Create sensor object, using the board's default I2C bus.
i2c = board.I2C()  # uses board.SCL and board.SDA
# i2c = board.STEMMA_I2C()  # For using the built-in STEMMA QT connector on a microcontroller
bme280 = adafruit_bme280.Adafruit_BME280_I2C(i2c)

# OR create sensor object, using the board's default SPI bus.
# spi = board.SPI()
# bme_cs = digitalio.DigitalInOut(board.D10)
# bme280 = adafruit_bme280.Adafruit_BME280_SPI(spi, bme_cs)

# change this to match the location's pressure (hPa) at sea level
bme280.sea_level_pressure = 1013.25

while True:
    print("\nTemperature: %0.1f C" % bme280.temperature)
    print("Humidity: %0.1f %%" % bme280.relative_humidity)
    print("Pressure: %0.1f hPa" % bme280.pressure)
    print("Altitude = %0.2f meters" % bme280.altitude)
    time.sleep(2)

Save this code to your Pi by copying and pasting it into a text file, downloading it directly from the Pi, etc.

Then in your command line run

python3 bme280_simpletest.py

The code will loop with the sensor data until you quit with a Control-C

That's it! Now if you want to read the documentation on the library, what each function does in depth, visit our readthedocs documentation at

https://circuitpython.readthedocs.io/projects/bme280/en/latest/

In order to use certain I2C sensors, such as the BNO055, BNO085 and the CCS811, you'll need to enable I2C clock stretching 'support' by greatly slowing down the I2C clock on the Raspberry Pi using the device tree overlay.

This is done by adding a line in /boot/config.txt.  Log in to a terminal on your Pi and open that file in Nano, or your text editor of choice:

sudo nano /boot/config.txt

Scroll down until you find a block like:

# Uncomment some of all of these to enable the optional hardware interfaces
dtparam=i2c_arm=on
dtparam=i2s=on
dtparam=spi=on

This block might vary depending on what you've enabled in raspi-config. Directly below it, add the following:

# Clock stretching by slowing down to 10KHz
dtparam=i2c_arm_baudrate=10000

Clock stretching is used by certain peripheral devices to signal to the Raspberry Pi to give it more time to respond, but the Raspberry Pi's hardware I2C doesn't support this feature. However, by slowing down the bus speed, it should give the peripheral more time.

The default baudrate may be 100KHz or 1MHz, by slowing it down to 10KHz or more, you may be able to be slow enough to avoid missing clocks.

In Nano, your screen should look like this:

Next, save the file and exit (in Nano, press Ctrl-Xy for yes, and Enter).

Now you can reboot your Pi and proceed to testing your I2C device:

sudo reboot

If you still get bad data, try slowing it down more, maybe to 5 KHz or 1 KHz rate. Reboot after each change

SPI is less popular than I2C but still you'll see lots of sensors and chips use it. Unlike I2C, you don't have everything share two wires. Instead, there's three shared wires (clock, data in, data out) and then a unique 'chip select' line for each chip.

The nice thing about SPI is you can have as many chips as you like, even the same kind, all share the three SPI wires, as long as each one has a unique chip select pin.

The formal/technical names for the 4 pins used are:

  • SPI clock - called SCLK, SCK or CLK
  • SPI data out - called MOSI for Microcomputer Out Serial In. This is the wire that takes data from the Linux computer to the sensor/chip. Sometimes marked SDI or DI on chips
  • SPI data in - called MISO for Microcomputer In Serial Out. This is the wire that takes data to the Linux computer from the sensor/chip. Sometimes marked SDO or DO on chips
  • SPI chip select - called CS or CE

Remember, connect all SCK, MOSI and MISO pins together (unless there's some specific reason/instruction not to) and a unique CS pin for each device.

WARNING! SPI on Linux/Raspberry PI WARNING!

SPI on microcontrollers is fairly simple, you have an SPI peripheral and you can transfer data on it with some low level command. Its 'your job' as a programmer to control the CS lines with a GPIO. That's how CircuitPython is structured as well. busio does just the SPI transmit/receive part and busdevice handles the chip select pin as well.

Linux, on the other hand, doesn't let you send data to SPI without a CS line, and the CS lines are fixed in hardware as well. For example on the Raspberry Pi, there's only two CS pins available for the hardware SPI pins - CE0 and CE1 - and you have to use them. (In theory there's an ioctl option called no_cs but this does not actually work)

To let you use more than 2 peripherals on SPI, we decided to let you use any CS pins you like, CircuitPython will toggle it the way you expect. But when we transfer SPI data we always tell the kernel to use CE0. CE0 will toggle like a CS pin, but if we leave it disconnected, its no big deal.

The upshot here is basically never connect anything to CE0 (or CE1 for that matter) when using SPI in its default configuration. Use whatever chip select pin you define in CircuitPython and just leave the CE pins alone, it will toggle as if it is the chip select line, completely on its own, so you shouldn't try to use it as a digital input/output/whatever.

Reassigning or Disabling the SPI Chip Enable Lines

There are some add-on boards that use the CE0 and CE1 lines such as the PiTFT, so you don't have much choice in the way it is wired. Fortunately, the Raspberry Pi OS allows you to reassign the Chip Enable lines to some unused pins or even disable them from Operating System usage altogether by loading a Device Tree Overlay, which allows them to be accessible in Python. In order to make this as easy as possible, there's a script to do all the hard work for you.

To run the script, there are a few dependencies that you will need to install first:

cd ~
pip3 install --upgrade adafruit-python-shell click
wget https://raw.githubusercontent.com/adafruit/Raspberry-Pi-Installer-Scripts/main/raspi-spi-reassign.py

If you already know the GPIO lines you would like to use, you can pass them in as parameters to the script. For instance, if you want to assign GPIO 5 to CE0 and GPIO 6 to CE1, you can use the following command:

sudo -E env PATH=$PATH python3 raspi-spi-reassign.py --ce0=5 --ce1=6

Alternatively, you can pass "disabled instead of a number to disable its usage. For instance, to disable the OS from using either Chip enable, you could run the following command:

sudo -E env PATH=$PATH python3 raspi-spi-reassign.py --ce0=disabled --ce1=disabled

For all features or to run the script interactively, you can just use the following command:

sudo -E env PATH=$PATH python3 raspi-spi-reassign.py
If you have installed a PiTFT from another guide, you will need to "uninstall" that before you can use the main spi ports.
While the Chip Enable lines are reassigned or disabled, you likely will not be able to use kernel drivers for the reassigned or disabled lines.

Using the Second SPI Port

The Raspberry Pi has a 'main' SPI port, but not a lot of people know there's a second one too! This is handy if you are using the main SPI port for a PiTFT or other kernel-driven device. You can enable this SPI #1 by adding

dtoverlay=spi1-3cs

to the bottom of /boot/config.txt and rebooting. You'll then see the addition of some /dev/spidev1.x devices.

Here's the wiring for SPI #1:

  • SCK_1 on GPIO #21
  • MOSI_1 on GPIO #20
  • MISO_1 on GPIO #19
  • SPI #1 CS0 on GPIO 18
  • SPI #1 CS1 on GPIO 17
  • SPI #1 CS2 on GPIO 16

like the main SPI, we'll use CE0 as our default but don't connect to it! Use any other pin and leave that one unused. Then update your scripts to use

spi = busio.SPI(board.SCK_1, MOSI=board.MOSI_1, MISO=board.MISO_1)

Parts Used

OK now that we've gone thru the warning, lets wire up an SPI MAX31855 thermocouple sensor, this particular device doesn't have a MOSI pin so we'll not connect it.

Angled shot of a Thermocouple Amplifier breakout board.
Thermocouples are very sensitive, requiring a good amplifier with a cold-compensation reference. The MAX31855K does everything for you, and can be easily interfaced with any...
$14.95
In Stock
Angled shot of a Thermocouple Type-K Glass Braid Insulated wire.
Thermocouples are best used for measuring temperatures that can go above 100 °C. This is a bare wires bead-probe which can measure air or surface temperatures. Most inexpensive...
$9.95
In Stock

We recommend using a breadboard and some female-male wires.

Angled shot of Premium Female/Male 'Extension' Jumper Wires - 40 x 6 (150mm)
Handy for making wire harnesses or jumpering between headers on PCB's. These premium jumper wires are 6" (150mm) long and come in a 'strip' of 40 (4 pieces of each of...
$3.95
In Stock

You can use a Cobbler to make this a little easier, the pins are then labeled!

Angled shot of Assembled Pi T-Cobbler Plus next to GPIO ribbon cable
This is the assembled version of the Pi T-Cobbler Plus.  It only works with the Raspberry Pi Model Zero, A+, B+, Pi 2, Pi 3 & Pi 4! (Any Pi with 2x20...
$7.95
In Stock

Wiring

  • Connect the Raspberry Pi 3.3V power pin to Vin
  • Connect the Raspberry Pi GND pin to GND
  • Connect the Pi SCLK pin to the MAX31855 CLK
  • Connect the Pi MISO pin to to the MAX31855 DO
  • Connect the Pi GPIO 5 pin to to the MAX31855 CS

Double-check you have the right wires connected to the right location, it can be tough to keep track of Pi pins as there are forty of them!

Install the CircuitPython MAX31855 Library

OK onto the good stuff, you can now install the Adafruit MAX31855 CircuitPython library.

As of this writing, not all libraries are up on PyPI so you may want to search before trying to install. Look for circuitpython and then the driver you want.

Once you know the name, install it with

pip3 install adafruit-circuitpython-max31855

You'll notice we also installed a few other dependancies called spidev, adafruit-pureio, adafruit-circuitpython-busdevice and more. This is a great thing about pip, if you have other required libraries they'll get installed too!

We also recommend an adafruit-blinka update in case we've fixed bugs:

pip3 install --upgrade adafruit_blinka

Run that code!

The finish line is right up ahead. You can now run one of the (many in some cases) example scripts we've written for you.

Check out the examples for your library by visiting the repository for the library and looking in the example folder. In this case, it would be https://github.com/adafruit/Adafruit_CircuitPython_MAX31855/tree/master/examples

As of this writing there's only one example. But that's cool, here it is:

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
# SPDX-License-Identifier: MIT

import time
import board
import digitalio
import adafruit_max31855

spi = board.SPI()
cs = digitalio.DigitalInOut(board.D5)

max31855 = adafruit_max31855.MAX31855(spi, cs)
while True:
    tempC = max31855.temperature
    tempF = tempC * 9 / 5 + 32
    print("Temperature: {} C {} F ".format(tempC, tempF))
    time.sleep(2.0)

Save this code to your Pi by copying and pasting it into a text file, downloading it directly from the Pi, etc.

Then in your command line run

python3 max31855_simpletest.py

The code will loop with the sensor data until you quit with a Control-C

Make sure you have a K-type thermocouple installed into the sensor breakout or you will get an error like the one below!

That's it! Now if you want to read the documentation on the library, what each function does in depth, visit our readthedocs documentation at

https://circuitpython.readthedocs.io/projects/max31855/en/latest/

One of the great things about Linux systems is that each of the subsystems are stored as separate devices and so you can tell if the I2C or SPI device is available by looking in the /dev/ folder. If your I2C or SPI devices are not showing up, make sure you followed the steps on the Installing CircuitPython Libraries on Raspberry Pi page.

In order to maintain a certain level of compatibility with CircuitPython, busio was written to attempt to automatically detect which pins you had your I2C or SPI device set up to use. However, with the flexibility that the Raspberry Pi provides and the staggering number of possible pin combinations, there are definitely cases where it fails to detect it properly. This is why we wrote the Python Extended Bus library, which allows you to specify the bus and device ID so you can tell it exactly which device you want to use.

Installing the Library

Installing the library is easy once you already have Blinka setup. Just use the following command to install:

pip3 install adafruit-extended-bus

That's it!

I2C Devices

To use an I2C device, you first need to know the device file name and from that, you can get the ID number. For instance, if you wanted to use /dev/i2c-1, the ID number would be 1.

You would then pass that ID into the Extended I2C Constructor. Here's an example of how to use /dev/i2c-1 with the BME280 sensor instead of the built-in busio.I2C module:

"""
This exmaple demonstrates how to instantiate the
Adafruit BME280 Sensor using this library and just
the I2C bus number.
"""

import adafruit_bme280
from adafruit_extended_bus import ExtendedI2C as I2C

# Create library object using our Extended Bus I2C port
i2c = I2C(1)  # Device is /dev/i2c-1
bme280 = adafruit_bme280.Adafruit_BME280_I2C(i2c)
print(f"\nTemperature: {bme280.temperature:0.1f} C")

SPI Devices

This is less useful than I2C if you only have the first SPI port enabled because in most cases, you can already use any GPIO pin as a Chip Enable line. However, if you have multiple SPI buses enabled, then it becomes much more useful.

To use SPI Devices with this library, it is similar to I2C, but you have a bus and Chip Enable number to determine. The first number is the Bus ID and the second number is the Chip Enable ID. So for instance, if you have a SPI device named /dev/spidev1.0 that you would like to use, then the Bus ID would be 1 and the Chip Enable ID would be 0.

You would then pass that IDs into the Extended SPI Constructor. Here's an example of how to use /dev/spidev1.0 with the BME280 sensor instead of the built-in busio.SPI module. We are using GPIO 5 for the actual Chip Enable in this example.

"""
This exmaple demonstrates how to instantiate the
Adafruit BME280 Sensor using this library and just
the SPI bus and chip enable numbers.

Please note that Linux will mess with the system CE pins, so
we are using an alternate pin for the Chip Enable line. This
library is more useful for using a SPI Device on a Bus other
than 0
"""

import board
import digitalio
import adafruit_bme280
from adafruit_extended_bus import ExtendedSPI as SPI

# Create library object using our Extended Bus I2C port
spi = SPI(1, 0)  # Device is /dev/spidev1.0
cs = digitalio.DigitalInOut(board.D5)
bme280 = adafruit_bme280.Adafruit_BME280_SPI(spi, cs)
print(f"\nTemperature: {bme280.temperature:0.1f} C")

After I2C and SPI, the third most popular "bus" protocol used is serial (also sometimes referred to as 'UART'). This is a non-shared two-wire protocol with an RX line, a TX line and a fixed baudrate. The most common devices that use UART are GPS units, MIDI interfaces, fingerprint sensors, thermal printers, and a scattering of sensors.

One thing you'll notice fast is that most linux computers have minimal UARTs, often only 1 hardware port. And that hardware port may be shared with a console.

There are two ways to connect UART / Serial devices to your Raspberry Pi. The easy way, and the hard way.

We'll demonstrate wiring up & using an Ultimate GPS with both methods

Angled shot of GPS module breakout.
We carry a few different GPS modules here in the Adafruit shop, but none that satisfied our every desire - that's why we designed this little GPS breakout board. We believe this is...
Out of Stock

The Easy Way - An External USB-Serial Converter

By far the easiest way to add a serial port is to use a USB to serial converter cable or breakout. They're not expensive, and you simply plug it into the USB port. On the other end are wires or pins that provide power, ground, RX, TX and maybe some other control pads or extras.

Here are some options, they have varying chipsets and physical designs but all will do the job. We'll list them in order of recommendation.

The first cable is easy to use and even has little plugs that you can arrange however you like, it contains a CP2102

USB to TTL Serial Cable With Type A plug and 4 wire sockets
The cable is easiest way ever to connect to your microcontroller/Raspberry Pi/WiFi router serial console port. Inside the big USB plug is a USB<->Serial conversion chip and at...
$9.95
In Stock

The CP2104 Friend is low cost, easy to use, but requires a little soldering, it has an '6-pin FTDI compatible' connector on the end, but all pins are broken out the sides

Both the FTDI friend and cable use classic FTDI chips, these are more expensive than the CP2104 or PL2303 but sometimes people like them!

Angled shot of blue rectangular FTDI breakout board.
Long gone are the days of parallel ports and serial ports. Now the USB port reigns supreme! But USB is hard, and you just want to transfer your every-day serial data from a...
$14.75
In Stock
Coiled FTDI Serial TTL-232 USB Cable.
Just about all electronics use TTL serial for debugging, bootloading, programming, serial output, etc. But it's rare for a computer to have a serial port anymore. This is a USB to...
$19.95
In Stock

You can wire up the GPS by connecting the following

  • GPS Vin  to USB 5V or 3V (red wire on USB console cable)
  • GPS Ground to USB Ground (black wire)
  • GPS RX to USB TX (green wire)
  • GPS TX to USB RX (white wire)

Once the USB adapter is plugged in, you'll need to figure out what the serial port name is. You can figure it out by unplugging-replugging in the USB and then typing dmesg | tail -10 (or just dmesg) and looking for text like this:

At the bottom, you'll see the 'name' of the attached device, in this case its ttyUSB0, that means our serial port device is available at /dev/ttyUSB0

The Hard Way - Using Built-in UART

If you don't want to plug in external hardware to the Pi you can use the built in UART on the RX/TX pins.

But, if you do this, you'll lose the serial console, so if you're using a PiUART or console cable or HAT that lets you connect directly to the console, that will no longer work and you'll have to use the HDMI+Keyboard or ssh method of running commands!

This isn't a big deal, in fact the serial login-console isn't even enabled by default on Raspbian anymore, but it's worth a warning!

Disabling Console & Enabling Serial

Before wiring up, make sure you have disabled the console.

Run sudo raspi-config and select the following:

Interfacing Options

Serial

Select No on enabling the login shell

Select Yes on enabling serial port hardware

Once complete you should have no console and yes on serial interface:

Then reboot

Once you've rebooted, you can use the built in UART via /dev/ttyS0

Wire the GPS as follows:

  • GPS Vin  to 3.3V (red wire)
  • GPS Ground to Ground (black wire)
  • GPS RX to TX (green wire)
  • GPS TX to RX (white wire)

Install the CircuitPython GPS Library

OK onto the good stuff, you can now install the Adafruit GPS CircuitPython library.

As of this writing, not all libraries are up on PyPI so you may want to search before trying to install. Look for circuitpython and then the driver you want.

(If you don't see it you can open up a github issue on circuitpython to remind us!)

Once you know the name, install it with

pip3 install adafruit-circuitpython-gps

You'll notice we also installed a dependancy called pyserial. This is a great thing about pip, if you have other required libraries they'll get installed too!

We also recommend an adafruit-blinka update in case we've fixed bugs:

pip3 install --upgrade adafruit_blinka

Run that code!

The finish line is right up ahead. You can now run one of the (many in some cases) example scripts we've written for you.

Check out the examples for your library by visiting the repository for the library and looking in the example folder. In this case, it would be https://github.com/adafruit/Adafruit_CircuitPython_GPS/tree/master/examples

Lets start with the simplest, the echo example

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
# SPDX-License-Identifier: MIT

# Simple GPS module demonstration.
# Will print NMEA sentences received from the GPS, great for testing connection
# Uses the GPS to send some commands, then reads directly from the GPS
import time
import board
import busio

import adafruit_gps

# Create a serial connection for the GPS connection using default speed and
# a slightly higher timeout (GPS modules typically update once a second).
# These are the defaults you should use for the GPS FeatherWing.
# For other boards set RX = GPS module TX, and TX = GPS module RX pins.
uart = busio.UART(board.TX, board.RX, baudrate=9600, timeout=10)

# for a computer, use the pyserial library for uart access
# import serial
# uart = serial.Serial("/dev/ttyUSB0", baudrate=9600, timeout=10)

# If using I2C, we'll create an I2C interface to talk to using default pins
# i2c = board.I2C()  # uses board.SCL and board.SDA
# i2c = board.STEMMA_I2C()  # For using the built-in STEMMA QT connector on a microcontroller

# Create a GPS module instance.
gps = adafruit_gps.GPS(uart)  # Use UART/pyserial
# gps = adafruit_gps.GPS_GtopI2C(i2c)  # Use I2C interface

# Initialize the GPS module by changing what data it sends and at what rate.
# These are NMEA extensions for PMTK_314_SET_NMEA_OUTPUT and
# PMTK_220_SET_NMEA_UPDATERATE but you can send anything from here to adjust
# the GPS module behavior:
#   https://cdn-shop.adafruit.com/datasheets/PMTK_A11.pdf

# Turn on the basic GGA and RMC info (what you typically want)
gps.send_command(b"PMTK314,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0")
# Turn on just minimum info (RMC only, location):
# gps.send_command(b'PMTK314,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0')
# Turn off everything:
# gps.send_command(b'PMTK314,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0')
# Tuen on everything (not all of it is parsed!)
# gps.send_command(b'PMTK314,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0')

# Set update rate to once a second (1hz) which is what you typically want.
gps.send_command(b"PMTK220,1000")
# Or decrease to once every two seconds by doubling the millisecond value.
# Be sure to also increase your UART timeout above!
# gps.send_command(b'PMTK220,2000')
# You can also speed up the rate, but don't go too fast or else you can lose
# data during parsing.  This would be twice a second (2hz, 500ms delay):
# gps.send_command(b'PMTK220,500')

# Main loop runs forever printing data as it comes in
timestamp = time.monotonic()
while True:
    data = gps.read(32)  # read up to 32 bytes
    # print(data)  # this is a bytearray type

    if data is not None:
        # convert bytearray to string
        data_string = "".join([chr(b) for b in data])
        print(data_string, end="")

    if time.monotonic() - timestamp > 5:
        # every 5 seconds...
        gps.send_command(b"PMTK605")  # request firmware version
        timestamp = time.monotonic()

We'll need to configure this code to work with our UART port name.

  • If you're using a USB-to-serial converter, the device name is probably /dev/ttyUSB0 - but check dmesg to make sure
  • If you're using the built-in UART on a Pi, the device name is /dev/ttyS0 - note that last character is a zero

Comment out the lines that reference board.TX, board.RX and busio.uart and uncomment the lines that import serial and define the serial device, like so:

# Define RX and TX pins for the board's serial port connected to the GPS.
# These are the defaults you should use for the GPS FeatherWing.
# For other boards set RX = GPS module TX, and TX = GPS module RX pins.
#RX = board.RX
#TX = board.TX

# Create a serial connection for the GPS connection using default speed and
# a slightly higher timeout (GPS modules typically update once a second).
#uart = busio.UART(TX, RX, baudrate=9600, timeout=3000)

# for a computer, use the pyserial library for uart access
import serial
uart = serial.Serial("/dev/ttyUSB0", baudrate=9600, timeout=3000)

And update the "/dev/ttyUSB0" device name if necessary to match your USB interface

Whichever method you use, you should see output like this, with $GP "NMEA sentences" - there probably wont be actual location data because you haven't gotten a GPS fix. As long as you see those $GP strings sorta like the below, you've got it working!

Adafruit Blinka supports PWMOut! This means you can easily pulse LEDs and control servos from your Raspberry Pi using any GPIO pin! This page will walk you through wiring up an LED and a servo, and provide an example for each.

Update Adafruit Blinka

Before getting started, make sure you're running the latest version of Adafruit Blinka. If you have not already installed it, run the following:

pip3 install adafruit-blinka

If you've previously installed it, you should run a pip3 update:

pip3 install --upgrade adafruit-blinka

Once you're certain that you are running the latest version of Adafruit Blinka, you can continue!

Supported Pins

PWMOut is supported on all GPIO pins on the Raspberry Pi! They are independent, and each can have a different frequency and duty cycle.

PWM - LEDs

This example will show you how to use PWM to pulse fade an LED.

First, wire up the LED to the Raspberry Pi.

  • LED - (negative) to Pi GND
  • LED + (positive) to 470Ω resistor
  • 470Ω resistor to Pi GPIO5

Double-check you have the right wires connected to the right location, it can be tough to keep track of pins as there are forty of them!

No additional libraries are needed, so we can go straight on to the example code.

Run the following code:

# SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries
#
# SPDX-License-Identifier: MIT

import time
import board
import pwmio

led = pwmio.PWMOut(board.D5, frequency=5000, duty_cycle=0)

while True:
    for i in range(100):
        # PWM LED up and down
        if i < 50:
            led.duty_cycle = int(i * 2 * 65535 / 100)  # Up
        else:
            led.duty_cycle = 65535 - int((i - 50) * 2 * 65535 / 100)  # Down
        time.sleep(0.01)

Verify that the LED is pulsing. If not, check that it's wired to GPIO #5, the resistor is installed correctly, and you have a ground wire to the Raspberry Pi.

Type control-C to quit.

Servo Control

In order to use servos, we take advantage of pulseio. You have two options. You can use the raw pulseio calls to set the frequency to 50 Hz and then set the pulse widths. Or, you can use adafruit_motor which manages servos for you quite nicely.

This section will cover both options.

Install adafruit_motor by running pip3 install adafruit-circuitpython-motor

First, wire up a servo to your Raspberry Pi:

  • Servo power (red wire) to Raspberry Pi 5V
  • Servo ground (black/brown wire) to Raspberry Pi ground
  • Servo signal (yellow/white wire) to Raspberry Pi GPIO5 

pulseio Servo Control

Run the following code:

# SPDX-FileCopyrightText: 2020 Kattni Rembor for Adafruit Industries
#
# SPDX-License-Identifier: MIT

import time
import board
import pwmio

# Initialize PWM output for the servo (on pin D5):
servo = pwmio.PWMOut(board.D5, frequency=50)


# Create a function to simplify setting PWM duty cycle for the servo:
def servo_duty_cycle(pulse_ms, frequency=50):
    period_ms = 1.0 / frequency * 1000.0
    duty_cycle = int(pulse_ms / (period_ms / 65535.0))
    return duty_cycle


# Main loop will run forever moving between 1.0 and 2.0 mS long pulses:
while True:
    servo.duty_cycle = servo_duty_cycle(1.0)
    time.sleep(1.0)
    servo.duty_cycle = servo_duty_cycle(2.0)
    time.sleep(1.0)

The servo should sweep back and forth repeatedly. If it does not, verify your wiring matches the diagram above.

Type control-C to quit.

adafruit_motor Servo Control

Run the following code:

# SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries
#
# SPDX-License-Identifier: MIT

import time
import board
import pwmio
from adafruit_motor import servo

# create a PWMOut object on Pin D5.
pwm = pwmio.PWMOut(board.D5, duty_cycle=2 ** 15,  frequency=50)

# Create a servo object.
servo = servo.Servo(pwm)

while True:
    for angle in range(0, 180, 5):  # 0 - 180 degrees, 5 degrees at a time.
        servo.angle = angle
        time.sleep(0.05)
    for angle in range(180, 0, -5): # 180 - 0 degrees, 5 degrees at a time.
        servo.angle = angle
        time.sleep(0.05)

The servo should sweep back and forth in steps. If it does not, verify your wiring matches the diagram above.

Type control-C to quit.

That's just a taste of what we've got working so far

We're adding more support constantly, so please hold tight and visit the adafruit_blinka github repo to share your feedback and perhaps even submit some improvements!

If you'd like to contribute, but aren't sure where to start, check out the following guides:

There's a few oddities when running Blinka/CircuitPython on linux. Here's a list of stuff to watch for that we know of!

This FAQ covers all the various platforms and hardware setups you can run Blinka on. Therefore, some of the information may not apply to your specific setup.

Update Blinka/Platform Libraries

Most issues can be solved by forcing Python to upgrade to the latest blinka / platform-detect libraries. Try running

sudo python3 -m pip install --upgrade --force-reinstall adafruit-blinka Adafruit-PlatformDetect

Getting an error message about "board" not found or "board" has no attribute

Somehow you have ended up with either the wrong board module or no board module at all.

DO NOT try to fix this by manually installing a library named board. There is one out there and it has nothing to do with Blinka. You will break things if you install that library!

The easiest way to recover is to simply force a reinstall of Blinka with:
python3 -m pip install --upgrade --force-reinstall adafruit-blinka

 

Mixed SPI mode devices

Due to the way we share an SPI peripheral, you cannot have two SPI devices with different 'mode/polarity' on the same SPI bus - you'll get weird data

95% of SPI devices are mode 0, check the driver to see mode or polarity settings. For example:

Why am I getting AttributeError: 'SpiDev' object has no attribute 'writebytes2'?

This is due to having an older version of spidev. You need at least version 3.4. This should have been taken care of when you installed Blinka, but in some cases it does not seem to happen.

To check what version of spidev Python is using:

$ python3
Python 3.6.8 (default, Oct 7 2019, 12:59:55)
[GCC 8.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import spidev
>>> spidev.__version__
'3.4'
>>>

If you see a version lower then 3.4 reported, then try a force upgrade of spidev with (back at command line):

sudo python3 -m pip install --upgrade --force-reinstall spidev

No Pullup/Pulldown support on some linux boards or MCP2221

Some linux boards, for example, AllWinner-based, do not have support to set pull up or pull down on their GPIO. Use an external resistor instead!

Getting OSError: read error with MCP2221

If you are getting a stack trace that ends with something like:

return self._hid.read(64)
File "hid.pyx", line 122, in hid.device.read
OSError: read error

Try setting an environment variable named BLINKA_MCP2221_RESET_DELAY to a value of 0.5 or higher.

 

Windows:

set BLINKA_MCP2221_RESET_DELAY=0.5

 

Linux:

export BLINKA_MCP2221_RESET_DELAY=0.5

 

This is a value in seconds to wait between resetting the MCP2221 and the attempt to reopen it. The reset is seen by the operating system as a hardware disconnect/reconnect. Different operating systems can need different amounts of time to wait after the reconnect before the attempt to reopen. Setting the above environment variable will override the default reset delay time, allowing it to be increased as needed for different setups.

Using FT232H with other FTDI devices.

Blinka uses the libusbk driver to talk to the FT232H directly. If you have other FTDI devices installed that are using the FTDI VCP drivers, you may run into issues. See here for a possible workaround:

https://forums.adafruit.com/viewtopic.php?f=19&t=166999

Getting "no backend available" with pyusb on Windows

This is probably only an issue for older versions of Windows. If you run into something like this, see this issue thread:

https://github.com/pyusb/pyusb/issues/120

which describes copying the 32bit and 64bit DLLs into specific folders. (example for Win7)

Getting "no backend available" or other problems with pyusb on Mac

Check out this issue thread:

https://github.com/pyusb/pyusb/issues/355

which has lots of discussion. It is probably worth reading through it all to determine what applies for your setup.  Most solutions seem to rely on setting the DYLD_LIBRARY_PATH environment variable.

This issue thread has further information:

https://github.com/orgs/Homebrew/discussions/3424

I can't get neopixel, analogio, audioio, rotaryio, displayio or pulseio to work!

Some CircuitPython modules like may not be supported.

  • Most SBCs do not have analog inputs so there is no analogio
  • Few SBCs have neopixel support so that is only available on Raspberry Pi (and any others that have low level neopixel protocol writing
  • Rotary encoders (rotaryio) is handled by interrupts on microcontrollers, and is not supported on SBCs at this time
  • Likewise pulseio PWM support is not supported on many SBCs, and if it is, it will not support a carrier wave (Infrared transmission)
  • For display usage, we suggest using python Pillow library or Pygame, we do not have displayio support

We aim to have, at a minimum, digitalio and busio (I2C/SPI). This lets you use the vast number of driver libraries

For analog inputs, the MCP3xxx library will give you AnalogIn objects. For PWM outputs, try the PCA9685. For audio, use pygame or other Python3 libraries to play audio.

Some libraries, like Adafruit_CircuitPython_DHT will try to bit-bang if pulsein isn't available. Slow linux boards (<700MHz) may not be able to read the pins fast enough), you'll just have to try!

Help, I'm getting the message "error while loading shared libraries: libgpiod.so.2: cannot open shared object file: No such file or directory"

It looks like libgpiod may not be installed on your board.

Try running the command: sudo apt-get install libgpiod2

= v5.5.0""> When running the libgpiod script, I see the message: configure: error: "libgpiod needs linux headers version >= v5.5.0"

Be sure you have the latest libgpiod.py script and run it with the -l or --legacy flag:

sudo python3 libgpiod.py --legacy

All Raspberry Pi Computers Have:

  • 1 x I2C port with busio (but clock stretching is not supported in hardware, so you must set the I2C bus speed to 10KHz to 'fix it')
  • 2 x SPI ports with busio
  • 1 x UART port with serial - note this is shared with the hardware console
  • pulseio.pulseIn using gpiod
  • neopixel support on a few pins
  • No AnalogIn support (Use an MCP3008 or similar to add ADC)
  • No PWM support (Use a PCA9685 or similar to add PWM)

Google Coral TPU Dev Boards Have:

  • 1 x I2C port with busio
  • 1 x SPI ports with busio
  • 1 x UART port with serial - note this is shared with the hardware console
  • 3 x PWMOut support
  • No NeoPixel support
  • No AnalogIn support (Use an MCP3008 or similar to add ADC)

Orange Pi PC Plus Boards Have:

  • 1 x I2C port with busio
  • 1 x SPI ports with busio
  • 1 x UART port with serial
  • No NeoPixel support
  • No AnalogIn support (Use an MCP3008 or similar to add ADC)
  • No PWM support (Use a PCA9685 or similar to add PWM)

Orange Pi R1 Boards Have:

  • 1 x I2C port with busio
  • 1 x SPI port with busio
  • 1 x UART port with serial
  • No NeoPixel support
  • No AnalogIn support (Use an MCP3008 or similar to add ADC)
  • No PWM support (Use a PCA9685 or similar to add PWM)

ODROID C2 Boards Have:

  • 1 x I2C port with busio
  • No SPI support
  • 1 x UART port with serial - note this is shared with the hardware console
  • No NeoPixel support
  • No AnalogIn support (Use an MCP3008 or similar to add ADC)
  • No PWM support (Use a PCA9685 or similar to add PWM)

DragonBoard 410c Boards Have:

  • 2 x I2C port with busio
  • 1 x SPI port with busio
  • 1 x UART port with serial
  • No NeoPixel support
  • No AnalogIn support (Use an MCP3008 or similar to add ADC)
  • No PWM support (Use a PCA9685 or similar to add PWM)

NVIDIA Jetson Nano Boards Have:

  • 2 x I2C port with busio
  • 2 x SPI ports with busio
  • 2 x UART port with serial - note one of these is shared with the hardware console
  • No NeoPixel support
  • No AnalogIn support (Use an MCP3008 or similar to add ADC)
  • No PWM support (Use a PCA9685 or similar to add PWM)

FT232H Breakouts Have:

  • 1x I2C port OR SPI port with busio
  • 12x GPIO pins with digitalio
  • No UART
  • No AnalogIn support
  • No AnalogOut support
  • No PWM support

If you are using Blinka in FT232H mode, then keep in mind these basic limitations.

  • SPI and I2C can not be used at the same time since they share the same pins.
  • GPIO speed is not super fast, so trying to do arbitrary bit bang like things may run into speed issues.
  • There are no ADCs.
  • There are no DACs.
  • UART is not available (its a different FTDI mode)

MCP2221 Breakouts Have:

  • 1x I2C port with busio
  • 4x GPIO pins with digitalio
  • 3x AnalogIn with analogio
  • 1x AnalogOut with analogio
  • 1x UART with pyserial
  • No PWM support
  • No hardware SPI support

If you are using Blinka in MCP2221 mode, then keep in mind these basic limitations.

  • GPIO speed is not super fast, so trying to do arbitrary bit bang like things may run into speed issues.
  • UART is available via pyserial, the serial COM port shows up as a second USB device during enumeration

This guide was first published on Jun 30, 2018. It was last updated on Mar 19, 2024.