Are you new to using CircuitPython? No worries, there is a full getting started guide here.
Plug the PyPortal into your computer with a known good USB cable (not a tint charge only cable). The PyPortal will appear to your computer as a flash drive named CIRCUITPY. If the drive does not appear you can install CircuitPython on your PyPortal and then return here.
Download the project files with the Download Project Bundle button below. Unzip the file and copy/paste the code.py and other project files to your CIRCUITPY drive using File Explorer or Finder (depending on your operating system).
Drive Structure
After copying the files, your drive should look like the listing below. It can contain other files as well, but must contain these at a minimum:

# SPDX-FileCopyrightText: 2022 TimCocks for Adafruit Industries # # SPDX-License-Identifier: MIT import time import random import board import displayio import vectorio import adafruit_imageload try: import adafruit_touchscreen except ImportError: # Touch screen is optional pass # display background color hex notation BACKGROUND_COLOR = 0x00AEF0 # how long to wait between animation frames in seconds ANIMATION_TIME = 0.3 # whether to use a touch overlay USE_TOUCH_OVERLAY = True # how long to wait for next valid touch event in seconds TOUCH_COOLDOWN = 0.1 # laser dot color in hex notation LASER_DOT_COLOR = 0xFF0000 class NekoAnimatedSprite(displayio.TileGrid): # how many pixels the cat will move for each step CONFIG_STEP_SIZE = 10 # how likely Neko is to stop moving to clean or sleep. # lower number means more likely to happen CONFIG_STOP_CHANCE_FACTOR = 30 # how likely Neko is to start moving after scratching a wall. # lower number means more likely to happen CONFIG_START_CHANCE_FACTOR = 10 # Minimum time to stop and scratch in seconds. larger time means scratch for longer CONFIG_MIN_SCRATCH_TIME = 2 TILE_WIDTH = 32 TILE_HEIGHT = 32 # State object indexes _ID = 0 _ANIMATION_LIST = 1 _MOVEMENT_STEP = 2 # last time an animation occurred LAST_ANIMATION_TIME = -1 # index of the sprite within the currently running animation CURRENT_ANIMATION_INDEX = 0 # last time the cat changed states # used to enforce minimum scratch time LAST_STATE_CHANGE_TIME = -1 # State objects # Format: (ID, (Animation List), (Step Sizes)) STATE_SITTING = (0, (0,), (0, 0)) # Moving states STATE_MOVING_LEFT = (1, (20, 21), (-CONFIG_STEP_SIZE, 0)) STATE_MOVING_UP = (2, (16, 17), (0, -CONFIG_STEP_SIZE)) STATE_MOVING_RIGHT = (3, (12, 13), (CONFIG_STEP_SIZE, 0)) STATE_MOVING_DOWN = (4, (8, 9), (0, CONFIG_STEP_SIZE)) STATE_MOVING_UP_RIGHT = ( 5, (14, 15), (CONFIG_STEP_SIZE // 2, -CONFIG_STEP_SIZE // 2), ) STATE_MOVING_UP_LEFT = ( 6, (18, 19), (-CONFIG_STEP_SIZE // 2, -CONFIG_STEP_SIZE // 2), ) STATE_MOVING_DOWN_LEFT = ( 7, (22, 23), (-CONFIG_STEP_SIZE // 2, CONFIG_STEP_SIZE // 2), ) STATE_MOVING_DOWN_RIGHT = ( 8, (10, 11), (CONFIG_STEP_SIZE // 2, CONFIG_STEP_SIZE // 2), ) # Scratching states STATE_SCRATCHING_LEFT = (9, (30, 31), (0, 0)) STATE_SCRATCHING_RIGHT = (10, (26, 27), (0, 0)) STATE_SCRATCHING_DOWN = (11, (24, 25), (0, 0)) STATE_SCRATCHING_UP = (12, (28, 29), (0, 0)) # Other states STATE_CLEANING = (13, (0, 0, 1, 1, 2, 3, 2, 3, 1, 1, 2, 3, 2, 3, 0, 0, 0), (0, 0)) STATE_SLEEPING = ( 14, ( 0, 0, 4, 4, 4, 0, 0, 4, 4, 4, 0, 0, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 7, 7, 0, 0, 0, ), (0, 0), ) # these states count as "moving" # used to alternate between moving and non-moving states MOVING_STATES = ( STATE_MOVING_UP, STATE_MOVING_DOWN, STATE_MOVING_LEFT, STATE_MOVING_RIGHT, STATE_MOVING_UP_LEFT, STATE_MOVING_UP_RIGHT, STATE_MOVING_DOWN_LEFT, STATE_MOVING_DOWN_RIGHT, ) # current state private field _CURRENT_STATE = STATE_SITTING # list of sprite indexes for the currently running animation CURRENT_ANIMATION = _CURRENT_STATE[_ANIMATION_LIST] """ Neko Animated Cat Sprite. Extends displayio.TileGrid manages changing the visible sprite image to animate Neko in it's various states. Also manages moving Neko's location by the step size in the direction Neko is facing. :param float animation_time: How long to wait in-between animation frames. Unit is seconds. default is 0.3 seconds :param tuple display_size: Tuple containing width and height of display. Defaults to values from board.DISPLAY. Used to determine when we are at the edge of the display, so we know to start scratching. """ def __init__(self, animation_time=0.3, display_size=None): if not display_size: # if display_size was not passed, try to use defaults from board if "DISPLAY" in dir(board): self._display_size = (board.DISPLAY.width, board.DISPLAY.height) else: raise RuntimeError( "Must pass display_size argument if not using built-in display." ) else: # use the display_size that was passed in self._display_size = display_size self._moving_to = None # Load the sprite sheet bitmap and palette sprite_sheet, neko_palette = adafruit_imageload.load( "/neko_cat_spritesheet.bmp", bitmap=displayio.Bitmap, palette=displayio.Palette, ) # make the first color transparent neko_palette.make_transparent(0) # Create a sprite tilegrid as self super().__init__( sprite_sheet, pixel_shader=neko_palette, width=1, height=1, tile_width=32, tile_height=32, ) # default initial location is top left corner self.x = 0 self.y = 0 # set the animation time into a private field self._animation_time = animation_time def _advance_animation_index(self): """ Helper function to increment the animation index, and wrap it back around to 0 after it reaches the final animation in the list. :return: None """ self.CURRENT_ANIMATION_INDEX += 1 if self.CURRENT_ANIMATION_INDEX >= len(self.CURRENT_ANIMATION): self.CURRENT_ANIMATION_INDEX = 0 @property def moving_to(self): """ Tuple with x/y location we are moving towards or none if not moving to anywhere specific. :return Optional(tuple): moving_to """ return self._moving_to @moving_to.setter def moving_to(self, new_moving_to): # if new values is not None if new_moving_to: # initially start with the new value that is passed in _clamped_x = new_moving_to[0] _clamped_y = new_moving_to[1] # if x location of new value is within 1/2 tile size of left edge of display if new_moving_to[0] < self.TILE_WIDTH // 2 + 1: # override x to 1/2 tile size away from the left edge of display _clamped_x = self.TILE_WIDTH // 2 + 1 # if x location of new value is within 1/2 tile size of right edge of display if new_moving_to[0] > self._display_size[0] - self.TILE_WIDTH // 2 - 1: # override x to 1/2 tile size away from right edge of display _clamped_x = self._display_size[0] - self.TILE_WIDTH // 2 - 1 # if y location of new value is within 1/2 tile size of top edge of display if new_moving_to[1] < self.TILE_HEIGHT // 2 + 1: # override y to 1/2 tile size away from top edge _clamped_y = self.TILE_HEIGHT // 2 + 1 # if y location of new value is within 1/2 tile size of bottom edge of display if new_moving_to[1] > self._display_size[1] - self.TILE_HEIGHT // 2 - 1: # override y to 1/2 tile size away from bottom edge _clamped_y = self._display_size[1] - self.TILE_HEIGHT // 2 - 1 # update the moving to target location self._moving_to = (_clamped_x, _clamped_y) else: # None means not moving to a target location self._moving_to = None @property def animation_time(self): """ How long to wait in-between animation frames. Unit is seconds. :return: animation_time """ return self._animation_time @animation_time.setter def animation_time(self, new_time): self._animation_time = new_time @property def current_state(self): """ The current state object. Format: (ID, (Animation List), (Step Sizes)) :return tuple: current state object """ return self._CURRENT_STATE @current_state.setter def current_state(self, new_state): # only change if we aren't already in the new_state if self.current_state != new_state: # update the current state object self._CURRENT_STATE = new_state # update the current animation list self.CURRENT_ANIMATION = new_state[self._ANIMATION_LIST] # reset current animation index to 0 self.CURRENT_ANIMATION_INDEX = 0 # show the first sprite in the animation self[0] = self.CURRENT_ANIMATION[self.CURRENT_ANIMATION_INDEX] # update the last state change time self.LAST_STATE_CHANGE_TIME = time.monotonic() def animate(self): """ If enough time has passed since the previous animation then execute the next animation step by changing the currently visible sprite and advancing the animation index. :return bool: True if an animation frame occurred. False if it's not time yet for an animation frame. """ _now = time.monotonic() # is it time to do an animation step? if _now > self.LAST_ANIMATION_TIME + self.animation_time: # update the visible sprite self[0] = self.CURRENT_ANIMATION[self.CURRENT_ANIMATION_INDEX] # advance the animation index self._advance_animation_index() # update the last animation time self.LAST_ANIMATION_TIME = _now return True # Not time for animation step yet return False @property def is_moving(self): """ Is Neko currently moving or not. :return bool: True if Neko is in a moving state. False otherwise. """ return self.current_state in self.MOVING_STATES @property def center_point(self): """ Current x/y coordinates Neko is centered on. :return tuple: x/y location of Neko's current center point: """ return (self.x + self.TILE_WIDTH // 2, self.y + self.TILE_HEIGHT // 2) def update(self): # pylint: disable=too-many-branches,too-many-statements """ Do the Following: - Attempt to do animation step. - Take a step if in a moving state. - Change states if needed. :return: None """ _now = time.monotonic() # if neko is moving to a specific location (i.e. user touched a spot) if self.moving_to: # if the x of the target location is between the left and right edges of Neko if self.x < self.moving_to[0] < self.x + self.TILE_WIDTH: # if the y of the target location is between top and bottom edges of Neko if self.y < self.moving_to[1] < self.y + self.TILE_HEIGHT: # change to either sleeping or cleaning states self.current_state = random.choice( (self.STATE_CLEANING, self.STATE_SLEEPING) ) # clear the moving to target location self.moving_to = None # if neko is moving to a specific location (i.e. user touched a spot) if self.moving_to: # if the target location is right of Neko if ( self.moving_to[0] > self.center_point[0] + self.CONFIG_STEP_SIZE // 2 ): # if the target location is below Neko if ( self.moving_to[1] > self.center_point[1] + self.CONFIG_STEP_SIZE // 2 ): # move down and to the right self.current_state = self.STATE_MOVING_DOWN_RIGHT # if the target location is above Neko elif ( self.moving_to[1] < self.center_point[1] - self.CONFIG_STEP_SIZE // 2 ): # move up and to the right self.current_state = self.STATE_MOVING_UP_RIGHT # same Y position else: # move to the right self.current_state = self.STATE_MOVING_RIGHT # if the target location is left of Neko elif ( self.moving_to[0] < self.center_point[0] - self.CONFIG_STEP_SIZE // 2 ): # if the target location is below Neko if ( self.moving_to[1] > self.center_point[1] + self.CONFIG_STEP_SIZE // 2 ): # move down and to the left self.current_state = self.STATE_MOVING_DOWN_LEFT # if the target location is above Neko elif ( self.moving_to[1] < self.center_point[1] - self.CONFIG_STEP_SIZE // 2 ): # move up and to the left self.current_state = self.STATE_MOVING_UP_LEFT # same Y position else: # move to the left self.current_state = self.STATE_MOVING_LEFT # same X position else: # if the target location is below Neko if ( self.moving_to[1] > self.center_point[1] + self.CONFIG_STEP_SIZE // 2 ): # move downwards self.current_state = self.STATE_MOVING_DOWN # if the target location is above Neko elif ( self.moving_to[1] < self.center_point[1] - self.CONFIG_STEP_SIZE // 2 ): # move upwards self.current_state = self.STATE_MOVING_UP # attempt animation did_animate = self.animate() # if we did do an animation step if did_animate: # if Neko is in a moving state if self.is_moving: # random chance to start sleeping or cleaning _roll = random.randint(0, self.CONFIG_STOP_CHANCE_FACTOR - 1) if _roll == 0: # change to new state: sleeping or cleaning _chosen_state = random.choice( (self.STATE_CLEANING, self.STATE_SLEEPING) ) self.current_state = _chosen_state else: # cat is not moving # if we are currently in a scratching state if len(self.current_state[self._ANIMATION_LIST]) <= 2: # check if we have scratched the minimum time if ( _now >= self.LAST_STATE_CHANGE_TIME + self.CONFIG_MIN_SCRATCH_TIME ): # minimum scratch time has elapsed # random chance to start moving _roll = random.randint(0, self.CONFIG_START_CHANCE_FACTOR - 1) if _roll == 0: # start moving in a random direction _chosen_state = random.choice(self.MOVING_STATES) self.current_state = _chosen_state else: # if we are sleeping or cleaning # if we have done every step of the animation if self.CURRENT_ANIMATION_INDEX == 0: # change to a random moving state _chosen_state = random.choice(self.MOVING_STATES) self.current_state = _chosen_state # If we are far enough away from side walls # to take a step in the current moving direction if ( 0 <= (self.x + self.current_state[self._MOVEMENT_STEP][0]) < (self._display_size[0] - self.TILE_WIDTH) ): # move the cat horizontally by current state step size x self.x += self.current_state[self._MOVEMENT_STEP][0] else: # we ran into a side wall if self.x > self.CONFIG_STEP_SIZE: # ran into right wall self.x = self._display_size[0] - self.TILE_WIDTH - 1 # change state to scratching right self.current_state = self.STATE_SCRATCHING_RIGHT else: # ran into left wall self.x = 1 # change state to scratching left self.current_state = self.STATE_SCRATCHING_LEFT # If we are far enough away from top and bottom walls # to step in the current moving direction if ( 0 <= (self.y + self.current_state[self._MOVEMENT_STEP][1]) < (self._display_size[1] - self.TILE_HEIGHT) ): # move the cat vertically by current state step size y self.y += self.current_state[self._MOVEMENT_STEP][1] else: # ran into top or bottom wall if self.y > self.CONFIG_STEP_SIZE: # ran into bottom wall self.y = self._display_size[1] - self.TILE_HEIGHT - 1 # change state to scratching down self.current_state = self.STATE_SCRATCHING_DOWN else: # ran into top wall self.y = 1 # change state to scratching up self.current_state = self.STATE_SCRATCHING_UP # variable to store the timestamp of previous touch event LAST_TOUCH_TIME = -1 if USE_TOUCH_OVERLAY: # initialize touch overlay ts = adafruit_touchscreen.Touchscreen( board.TOUCH_XL, board.TOUCH_XR, board.TOUCH_YD, board.TOUCH_YU, calibration=((5200, 59000), (5800, 57000)), size=(320, 240), ) # default to built-in display display = board.DISPLAY # create displayio Group main_group = displayio.Group() # create background group, seperate from main_group so that # it can be scaled, which saves RAM. background_group = displayio.Group(scale=16) # create bitmap to hold solid color background background_bitmap = displayio.Bitmap(20, 15, 1) # create background palette background_palette = displayio.Palette(1) # set the background color into the palette background_palette[0] = BACKGROUND_COLOR # create a tilegrid to show the background bitmap background_tilegrid = displayio.TileGrid( background_bitmap, pixel_shader=background_palette ) # append the tilegrid to the group. background_group.append(background_tilegrid) # add background_group to main_group main_group.append(background_group) # create Neko neko = NekoAnimatedSprite(animation_time=ANIMATION_TIME) # put Neko in center of display neko.x = display.width // 2 - neko.TILE_WIDTH // 2 neko.y = display.height // 2 - neko.TILE_HEIGHT // 2 # add neko to main_group main_group.append(neko) # show main_group on the display display.root_group = main_group if USE_TOUCH_OVERLAY: # initialize laser palette laser_dot_palette = displayio.Palette(1) # set the hex color code for the laser dot laser_dot_palette[0] = LASER_DOT_COLOR # create a circle to be the laser dot circle = vectorio.Circle( pixel_shader=laser_dot_palette, radius=3, x=-10, # negative values so it starts off the edge of the display y=-10, # won't get shown until the location moves onto the display ) # add it to the main_group so it gets shown on the display when ready main_group.append(circle) while True: # update Neko to do animations and movements neko.update() if USE_TOUCH_OVERLAY: # if Neko is not moving to a location if not neko.moving_to: # hide the laser dot circle by moving it off of the display circle.x = -10 circle.y = -10 _now = time.monotonic() # if the touch cooldown has elapsed since previous touch event if _now > LAST_TOUCH_TIME + TOUCH_COOLDOWN: # read current touch data from overlay touch_location = ts.touch_point # if anything is being touched if touch_location: # update the timestamp for cooldown enforcement LAST_TOUCH_TIME = _now # move the laser dot circle to the x/y coordinates being touched circle.x = touch_location[0] circle.y = touch_location[1] # print("placing laser dot at: {}".format(touch_location)) # tell Neko to move to the x/y coordinates being touched. neko.moving_to = (touch_location[0], touch_location[1])
Page last edited January 21, 2025
Text editor powered by tinymce.