If the header is too long, just cut/snap it short!
Next you'll need to solder the header to the LCD.You must do this, it is not OK to just try to 'press fit' the LCD!
Also watch out not to apply too much heat, or you may melt the underlying breadboard. You can try 'tacking' pin 1 and pin 16 and then removing from the breadboard to finish the remaining solder points
If you happen to have one that does not include a resistor, you'll need to add one between 5V and pin 15. To calculate the value of the series resistor, look up the maximum backlight current and the typical backlight voltage drop from the data sheet. Subtract the voltage drop from 5 volts, then divide by the maximum current, then round up to the next standard resistor value. For example, if the backlight voltage drop is 3.5v typical and the rated current is 16mA, then the resistor should be (5 - 3.5)/0.016 = 93.75 ohms, or 100 ohms when rounded up to a standard value. If you can't find the data sheet, then it should be safe to use a 220 ohm resistor, although a value this high may make the backlight rather dim.
Bus Wiring
Now we'll finish up the wiring by connecting the data lines. There are 11 bus lines: D0 through D7 (8 data lines) and RS, EN, and RW. D0-D7 are the pins that have the raw data we send to the display. TheRS pin lets the microcontroller tell the LCD whether it wants to display that data (as in, an ASCII character) or whether it is a command byte (like, change posistion of the cursor). The EN pin is the 'enable' line we use this to tell the LCD when data is ready for reading. The RW pin is used to set the direction - whether we want to write to the display (common) or read from it (less common)The good news is that not all these pins are necessary for us to connect to the microcontroller (Arduino). RW for example, is not needed if we're only writing to the display (which is the most common thing to do anyways) so we can 'tie' it to ground. There is also a way to talk to the LCD using only 4 data pins instead of 8. This saves us 4 pins! Why would you ever want to use 8 when you could use 4? We're not 100% sure but we think that in some cases its faster to use 8 - it takes twice as long to use 4 - and that speed is important. For us, the speed isn't so important so we'll save some pins!
So to recap, we need 6 pins: RS, EN, D7, D6, D5, and D4 to talk to the LCD.
We'll be using the LiquidCrystal library to talk to the LCD so a lot of the annoying work of setting pins and such is taken care of. Another nice thing about this library is that you can use any Arduino pin to connect to the LCD pins. So after you go through this guide, you'll find it easy to swap around the pins if necessary
You should have four 'gap' pins on the LCD between the 4 data bus wires and the control wires.
Page last edited July 12, 2012
Text editor powered by tinymce.