I2C Wiring
Use this wiring if you want to connect via I2C interface
By default, the I2C address is 0x68. If you add a jumper from DO to 3.3V the address will change to 0x69
- Connect board VIN (red wire) to Arduino 5V if you are running a 5V board Arduino (Uno, etc.). If your board is 3V, connect to that instead.
- Connect board GND (black wire) to Arduino GND
- Connect board SCL (yellow wire) to Arduino SCL
- Connect board SDA (blue wire) to Arduino SDA
The final results should resemble the illustration above, showing an Adafruit Metro development board.
SPI Wiring
Since this is a SPI-capable sensor, we can use hardware or 'software' SPI. To make wiring identical on all microcontrollers, we'll begin with 'software' SPI. The following pins should be used:
- Connect Vin to the power supply, 3V or 5V is fine. Use the same voltage that the microcontroller uses
- Connect GND to common power/data ground
- Connect the SCL pin to Digital #13 (Yellow wire) but any pin can be used later
- Connect the AD0 pin to Digital #12 (White wire) but any pin can be used later
- Connect the SDA pin to Digital #11 (Blue wire) but any pin can be used later
- Connect the CS pin Digital #10 (Green wire) but any pin can be used later
Later on, once we get it working, we can adjust the library to use hardware SPI if you desire, or change the pins to others.
Library Installation
You can install the Adafruit ICM20649 Library for Arduino using the Library Manager in the Arduino IDE.
Click the Manage Libraries ... menu item, search for Adafruit ICM20649, and select the Adafruit ICM20649 library:
Then follow the same process for the Adafruit BusIO library.
Finally follow the same process for the Adafruit Unified Sensor library:
Load Example
Open up File -> Examples -> Adafruit ICM20649 -> adafruit_icm20649_test and upload to your Arduino wired up to the sensor.
Depending on whether you are using I2C or SPI, change the pin names and comment or uncomment the following lines.
// Try to initialize! if (!icm.begin_I2C()) { // if (!icm.begin_SPI(ICM_CS)) { // if (!icm.begin_SPI(ICM_CS, ICM_SCK, ICM_MISO, ICM_MOSI)) {
Once you upload the code, you will see the accelerometer, gyro, and temperature measurements being printed when you open the Serial Monitor (Tools->Serial Monitor) at 115200 baud, similar to this:
Give the sensor a wiggle or a spin and watch how the measurements change!
// Basic demo for accelerometer readings from Adafruit ICM20649 #include <Adafruit_ICM20X.h> #include <Adafruit_ICM20649.h> #include <Adafruit_Sensor.h> #include <Wire.h> Adafruit_ICM20649 icm; uint16_t measurement_delay_us = 65535; // Delay between measurements for testing // For SPI mode, we need a CS pin #define ICM_CS 10 // For software-SPI mode we need SCK/MOSI/MISO pins #define ICM_SCK 13 #define ICM_MISO 12 #define ICM_MOSI 11 void setup(void) { Serial.begin(115200); while (!Serial) delay(10); // will pause Zero, Leonardo, etc until serial console opens Serial.println("Adafruit ICM20649 test!"); // Try to initialize! if (!icm.begin_I2C()) { // if (!icm.begin_SPI(ICM_CS)) { // if (!icm.begin_SPI(ICM_CS, ICM_SCK, ICM_MISO, ICM_MOSI)) { Serial.println("Failed to find ICM20649 chip"); while (1) { delay(10); } } Serial.println("ICM20649 Found!"); // icm.setAccelRange(ICM20649_ACCEL_RANGE_4_G); Serial.print("Accelerometer range set to: "); switch (icm.getAccelRange()) { case ICM20649_ACCEL_RANGE_4_G: Serial.println("+-4G"); break; case ICM20649_ACCEL_RANGE_8_G: Serial.println("+-8G"); break; case ICM20649_ACCEL_RANGE_16_G: Serial.println("+-16G"); break; case ICM20649_ACCEL_RANGE_30_G: Serial.println("+-30G"); break; } // icm.setGyroRange(ICM20649_GYRO_RANGE_500_DPS); Serial.print("Gyro range set to: "); switch (icm.getGyroRange()) { case ICM20649_GYRO_RANGE_500_DPS: Serial.println("500 degrees/s"); break; case ICM20649_GYRO_RANGE_1000_DPS: Serial.println("1000 degrees/s"); break; case ICM20649_GYRO_RANGE_2000_DPS: Serial.println("2000 degrees/s"); break; case ICM20649_GYRO_RANGE_4000_DPS: Serial.println("4000 degrees/s"); break; } // icm.setAccelRateDivisor(4095); uint16_t accel_divisor = icm.getAccelRateDivisor(); float accel_rate = 1125 / (1.0 + accel_divisor); Serial.print("Accelerometer data rate divisor set to: "); Serial.println(accel_divisor); Serial.print("Accelerometer data rate (Hz) is approximately: "); Serial.println(accel_rate); // icm.setGyroRateDivisor(255); uint8_t gyro_divisor = icm.getGyroRateDivisor(); float gyro_rate = 1100 / (1.0 + gyro_divisor); Serial.print("Gyro data rate divisor set to: "); Serial.println(gyro_divisor); Serial.print("Gyro data rate (Hz) is approximately: "); Serial.println(gyro_rate); Serial.println(); } void loop() { // /* Get a new normalized sensor event */ sensors_event_t accel; sensors_event_t gyro; sensors_event_t temp; icm.getEvent(&accel, &gyro, &temp); Serial.print("\t\tTemperature "); Serial.print(temp.temperature); Serial.println(" deg C"); /* Display the results (acceleration is measured in m/s^2) */ Serial.print("\t\tAccel X: "); Serial.print(accel.acceleration.x); Serial.print(" \tY: "); Serial.print(accel.acceleration.y); Serial.print(" \tZ: "); Serial.print(accel.acceleration.z); Serial.println(" m/s^2 "); /* Display the results (acceleration is measured in m/s^2) */ Serial.print("\t\tGyro X: "); Serial.print(gyro.gyro.x); Serial.print(" \tY: "); Serial.print(gyro.gyro.y); Serial.print(" \tZ: "); Serial.print(gyro.gyro.z); Serial.println(" radians/s "); Serial.println(); delay(100); // Serial.print(temp.temperature); // // Serial.print(","); // // Serial.print(accel.acceleration.x); // Serial.print(","); Serial.print(accel.acceleration.y); // Serial.print(","); Serial.print(accel.acceleration.z); // // Serial.print(","); // Serial.print(gyro.gyro.x); // Serial.print(","); Serial.print(gyro.gyro.y); // Serial.print(","); Serial.print(gyro.gyro.z); // Serial.println(); // // delayMicroseconds(measurement_delay_us); }
Text editor powered by tinymce.