CircuitPython is a derivative of MicroPython designed to simplify experimentation and education on low-cost microcontrollers. It makes it easier than ever to get prototyping by requiring no upfront desktop software downloads. Simply copy and edit files on the CIRCUITPY drive to iterate.

CircuitPython Quickstart

Follow this step-by-step to quickly get CircuitPython running on your board.

Click the link above to download the latest CircuitPython UF2 file.

Save it wherever is convenient for you.

Plug your board into your computer, using a known-good data-sync cable, directly, or via an adapter if needed.

Click the reset button once (highlighted in red above), and then click it again when you see the RGB status LED(s) (highlighted in green above) turn purple (approximately half a second later). Sometimes it helps to think of it as a "slow double-click" of the reset button.

Once successful, you will see the RGB status LED(s) turn green (highlighted in green above). If you see red, try another port, or if you're using an adapter or hub, try without the hub, or different adapter or hub.

If double-clicking doesn't work the first time, try again. Sometimes it can take a few tries to get the rhythm right!

A lot of people end up using charge-only USB cables and it is very frustrating! Make sure you have a USB cable you know is good for data sync.

If after several tries, and verifying your USB cable is data-ready, you still cannot get to the bootloader, it is possible that the bootloader is missing or damaged. Check out the Install UF2 Bootloader page for details on resolving this issue.

You will see a new disk drive appear called FTHRS2BOOT.

 

 

Drag the adafruit_circuitpython_etc.uf2 file to FTHRS2BOOT.

The BOOT drive will disappear and a new disk drive called CIRCUITPY will appear.

That's it!

This guide was first published on Nov 25, 2021. It was last updated on 2022-07-07 11:25:14 -0400.

This page (CircuitPython) was last updated on Aug 07, 2022.

Text editor powered by tinymce.