Once you have CircuitPython setup and libraries installed we can get your board connected to the Internet.
To get connected, you will need to start by creating a secrets file.
What's a secrets file?
We expect people to share tons of projects as they build CircuitPython WiFi widgets. What we want to avoid is people accidentally sharing their passwords or secret tokens and API keys. So, we designed all our examples to use a secrets.py file, that is in your CIRCUITPY drive, to hold secret/private/custom data. That way you can share your main project without worrying about accidentally sharing private stuff.
Your secrets.py file should look like this:
# This file is where you keep secret settings, passwords, and tokens! # If you put them in the code you risk committing that info or sharing it secrets = { 'ssid' : 'home ssid', 'password' : 'my password', 'timezone' : "America/New_York", # http://worldtimeapi.org/timezones 'github_token' : 'fawfj23rakjnfawiefa', 'hackaday_token' : 'h4xx0rs3kret', }
Inside is a Python dictionary named secrets with a line for each entry. Each entry has an entry name (say 'ssid'
) and then a colon to separate it from the entry key 'home ssid'
and finally a comma ,
At a minimum you'll need the ssid
and password
for your local WiFi setup. As you make projects you may need more tokens and keys, just add them one line at a time. See for example other tokens such as one for accessing github or the hackaday API. Other non-secret data like your timezone can also go here, just cause its called secrets doesn't mean you can't have general customization data in there!
For the correct time zone string, look at http://worldtimeapi.org/timezones and remember that if your city is not listed, look for a city in the same time zone, for example Boston, New York, Philadelphia, Washington DC, and Miami are all on the same time as New York.
Of course, don't share your secrets.py - keep that out of GitHub, Discord or other project-sharing sites.
Connect to WiFi
OK now you have your secrets setup - you can connect to the Internet using the ESP32SPI and the Requests modules.
First make sure you are running the latest version of Adafruit CircuitPython for your board.
Next you'll need to install the necessary libraries to use the hardware--carefully follow the steps to find and install these libraries from Adafruit's CircuitPython library bundle. Our introduction guide has a great page on how to install the library bundle for both express and non-express boards.
Remember for non-express boards like the, you'll need to manually install the necessary libraries from the bundle:
- adafruit_bus_device
- adafruit_esp32_spi
- adafruit_requests
- neopixel
Before continuing make sure your board's lib folder or root filesystem has the above files copied over.
Next connect to the board's serial REPL so you are at the CircuitPython >>> prompt.
Into your lib folder. Once that's done, load up the following example using Mu or your favorite editor:
# SPDX-FileCopyrightText: 2019 ladyada for Adafruit Industries # SPDX-License-Identifier: MIT from os import getenv import board import busio from digitalio import DigitalInOut import adafruit_connection_manager import adafruit_requests from adafruit_esp32spi import adafruit_esp32spi # Get wifi details and more from a settings.toml file # tokens used by this Demo: CIRCUITPY_WIFI_SSID, CIRCUITPY_WIFI_PASSWORD secrets = { "ssid": getenv("CIRCUITPY_WIFI_SSID"), "password": getenv("CIRCUITPY_WIFI_PASSWORD"), } if secrets == {"ssid": None, "password": None}: try: # Fallback on secrets.py until depreciation is over and option is removed from secrets import secrets except ImportError: print("WiFi secrets are kept in settings.toml, please add them there!") raise print("ESP32 SPI webclient test") TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html" JSON_URL = "http://api.coindesk.com/v1/bpi/currentprice/USD.json" # If you are using a board with pre-defined ESP32 Pins: esp32_cs = DigitalInOut(board.ESP_CS) esp32_ready = DigitalInOut(board.ESP_BUSY) esp32_reset = DigitalInOut(board.ESP_RESET) # If you have an AirLift Shield: # esp32_cs = DigitalInOut(board.D10) # esp32_ready = DigitalInOut(board.D7) # esp32_reset = DigitalInOut(board.D5) # If you have an AirLift Featherwing or ItsyBitsy Airlift: # esp32_cs = DigitalInOut(board.D13) # esp32_ready = DigitalInOut(board.D11) # esp32_reset = DigitalInOut(board.D12) # If you have an externally connected ESP32: # NOTE: You may need to change the pins to reflect your wiring # esp32_cs = DigitalInOut(board.D9) # esp32_ready = DigitalInOut(board.D10) # esp32_reset = DigitalInOut(board.D5) # Secondary (SCK1) SPI used to connect to WiFi board on Arduino Nano Connect RP2040 if "SCK1" in dir(board): spi = busio.SPI(board.SCK1, board.MOSI1, board.MISO1) else: spi = busio.SPI(board.SCK, board.MOSI, board.MISO) esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset) pool = adafruit_connection_manager.get_radio_socketpool(esp) ssl_context = adafruit_connection_manager.get_radio_ssl_context(esp) requests = adafruit_requests.Session(pool, ssl_context) if esp.status == adafruit_esp32spi.WL_IDLE_STATUS: print("ESP32 found and in idle mode") print("Firmware vers.", esp.firmware_version) print("MAC addr:", ":".join("%02X" % byte for byte in esp.MAC_address)) for ap in esp.scan_networks(): print("\t%-23s RSSI: %d" % (ap.ssid, ap.rssi)) print("Connecting to AP...") while not esp.is_connected: try: esp.connect_AP(secrets["ssid"], secrets["password"]) except OSError as e: print("could not connect to AP, retrying: ", e) continue print("Connected to", esp.ap_info.ssid, "\tRSSI:", esp.ap_info.rssi) print("My IP address is", esp.ipv4_address) print( "IP lookup adafruit.com: %s" % esp.pretty_ip(esp.get_host_by_name("adafruit.com")) ) print("Ping google.com: %d ms" % esp.ping("google.com")) # esp._debug = True print("Fetching text from", TEXT_URL) r = requests.get(TEXT_URL) print("-" * 40) print(r.text) print("-" * 40) r.close() print() print("Fetching json from", JSON_URL) r = requests.get(JSON_URL) print("-" * 40) print(r.json()) print("-" * 40) r.close() print("Done!")
And save it to your board, with the name code.py.
Then go down to this line
esp.connect_AP(b'MY_SSID_NAME', b'MY_SSID_PASSWORD')
and change MY_SSID_NAME
and MY_SSID_PASSWORD
to your access point name and password, keeping them within the '' quotes. (This example doesn't use the secrets' file, but its also very stand-alone so if other things seem to not work you can always re-load this. You should get something like the following:
In order, the example code...
Initializes the ESP32 over SPI using the SPI port and 3 control pins:
esp32_cs = DigitalInOut(board.ESP_CS) esp32_ready = DigitalInOut(board.ESP_BUSY) esp32_reset = DigitalInOut(board.ESP_RESET) spi = busio.SPI(board.SCK, board.MOSI, board.MISO) esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)
Tells our requests
library the type of socket we're using (socket type varies by connectivity type - we'll be using the adafruit_esp32spi_socket
for this example). We'll also set the interface to an esp
object. This is a little bit of a hack, but it lets us use requests
like CPython does.
requests.set_socket(socket, esp)
Verifies an ESP32 is found, checks the firmware and MAC address
if esp.status == adafruit_esp32spi.WL_IDLE_STATUS: print("ESP32 found and in idle mode") print("Firmware vers.", esp.firmware_version) print("MAC addr:", [hex(i) for i in esp.MAC_address])
Performs a scan of all access points it can see and prints out the name and signal strength:
for ap in esp.scan_networks(): print("\t%s\t\tRSSI: %d" % (str(ap['ssid'], 'utf-8'), ap['rssi']))
Connects to the AP we've defined here, then prints out the local IP address, attempts to do a domain name lookup and ping google.com to check network connectivity (note sometimes the ping fails or takes a while, this isn't a big deal)
print("Connecting to AP...") esp.connect_AP(b'MY_SSID_NAME', b'MY_SSID_PASSWORD') print("Connected to", str(esp.ssid, 'utf-8'), "\tRSSI:", esp.rssi) print("My IP address is", esp.pretty_ip(esp.ip_address)) print("IP lookup adafruit.com: %s" % esp.pretty_ip(esp.get_host_by_name("adafruit.com"))) print("Ping google.com: %d ms" % esp.ping("google.com"))
OK now we're getting to the really interesting part. With a SAMD51 or other large-RAM (well, over 32 KB) device, we can do a lot of neat tricks. Like for example we can implement an interface a lot like requests - which makes getting data really really easy
To read in all the text from a web URL call requests.get
- you can pass in https
URLs for SSL connectivity
TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html" print("Fetching text from", TEXT_URL) r = requests.get(TEXT_URL) print('-'*40) print(r.text) print('-'*40) r.close()
Or, if the data is in structured JSON, you can get the json pre-parsed into a Python dictionary that can be easily queried or traversed. (Again, only for nRF52840, M4 and other high-RAM boards)
JSON_URL = "http://api.coindesk.com/v1/bpi/currentprice/USD.json" print("Fetching json from", JSON_URL) r = requests.get(JSON_URL) print('-'*40) print(r.json()) print('-'*40) r.close()
Here's an example of using Requests to perform GET and POST requests to a server.
Temporarily unable to load content:
The code first sets up the ESP32SPI interface. Then, it initializes a request
object using an ESP32 socket
and the esp
object.
import board import busio from digitalio import DigitalInOut import adafruit_esp32spi.adafruit_esp32spi_socket as socket from adafruit_esp32spi import adafruit_esp32spi import adafruit_requests as requests # If you have an externally connected ESP32: esp32_cs = DigitalInOut(board.D9) esp32_ready = DigitalInOut(board.D10) esp32_reset = DigitalInOut(board.D5) spi = busio.SPI(board.SCK, board.MOSI, board.MISO) esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset) print("Connecting to AP...") while not esp.is_connected: try: esp.connect_AP(b'MY_SSID_NAME', b'MY_SSID_PASSWORD') except RuntimeError as e: print("could not connect to AP, retrying: ",e) continue print("Connected to", str(esp.ssid, 'utf-8'), "\tRSSI:", esp.rssi) # Initialize a requests object with a socket and esp32spi interface requests.set_socket(socket, esp)
Make sure to set the ESP32 pinout to match your AirLift breakout's connection:
esp32_cs = DigitalInOut(board.D9) esp32_ready = DigitalInOut(board.D10) esp32_reset = DigitalInOut(board.D5)
The code makes a HTTP GET request to Adafruit's WiFi testing website - http://wifitest.adafruit.com/testwifi/index.html.
To do this, we'll pass the URL into requests.get()
. We're also going to save the response from the server into a variable named response
.
While we requested data from the server, we'd what the server responded with. Since we already saved the server's response
, we can read it back. Luckily for us, requests automatically decodes the server's response into human-readable text, you can read it back by calling response.text
.
Lastly, we'll perform a bit of cleanup by calling response.close()
. This closes, deletes, and collect's the response's data.
print("Fetching text from %s"%TEXT_URL) response = requests.get(TEXT_URL) print('-'*40) print("Text Response: ", response.text) print('-'*40) response.close()
While some servers respond with text, some respond with json-formatted data consisting of attribute–value pairs.
CircuitPython_Requests can convert a JSON-formatted response from a server into a CPython dict.
object.
We can also fetch and parse json data. We'll send a HTTP get to a url we know returns a json-formatted response (instead of text data).
Then, the code calls response.json()
to convert the response to a CPython dict
.
print("Fetching JSON data from %s"%JSON_GET_URL) response = requests.get(JSON_GET_URL) print('-'*40) print("JSON Response: ", response.json()) print('-'*40) response.close()
Requests can also POST data to a server by calling the requests.post
method, passing it a data
value.
data = '31F' print("POSTing data to {0}: {1}".format(JSON_POST_URL, data)) response = requests.post(JSON_POST_URL, data=data) print('-'*40) json_resp = response.json() # Parse out the 'data' key from json_resp dict. print("Data received from server:", json_resp['data']) print('-'*40) response.close()
You can also post json-formatted data to a server by passing json
data into the requests.post
method.
json_data = {"Date" : "July 25, 2019"} print("POSTing data to {0}: {1}".format(JSON_POST_URL, json_data)) response = requests.post(JSON_POST_URL, json=json_data) print('-'*40) json_resp = response.json() # Parse out the 'json' key from json_resp dict. print("JSON Data received from server:", json_resp['json']) print('-'*40) response.close()
Advanced Requests Usage
Want to send custom HTTP headers, parse the response as raw bytes, or handle a response's http status code in your CircuitPython code?
We've written an example to show advanced usage of the requests module below.
Temporarily unable to load content:
WiFi Manager
That simpletest example works but its a little finicky - you need to constantly check WiFi status and have many loops to manage connections and disconnections. For more advanced uses, we recommend using the WiFiManager object. It will wrap the connection/status/requests loop for you - reconnecting if WiFi drops, resetting the ESP32 if it gets into a bad state, etc.
Here's a more advanced example that shows the WiFi manager and also how to POST data with some extra headers:
# SPDX-FileCopyrightText: 2019 ladyada for Adafruit Industries # SPDX-License-Identifier: MIT import time from os import getenv import board import busio from digitalio import DigitalInOut import neopixel from adafruit_esp32spi import adafruit_esp32spi from adafruit_esp32spi import adafruit_esp32spi_wifimanager print("ESP32 SPI webclient test") # Get wifi details and more from a settings.toml file # tokens used by this Demo: CIRCUITPY_WIFI_SSID, CIRCUITPY_WIFI_PASSWORD # CIRCUITPY_AIO_USERNAME, CIRCUITPY_AIO_KEY secrets = {} for token in ["ssid", "password"]: if getenv("CIRCUITPY_WIFI_" + token.upper()): secrets[token] = getenv("CIRCUITPY_WIFI_" + token.upper()) for token in ["aio_username", "aio_key"]: if getenv("CIRCUITPY_" + token.upper()): secrets[token] = getenv("CIRCUITPY_" + token.upper()) if not secrets: try: # Fallback on secrets.py until depreciation is over and option is removed from secrets import secrets except ImportError: print("WiFi secrets are kept in settings.toml, please add them there!") raise # If you are using a board with pre-defined ESP32 Pins: esp32_cs = DigitalInOut(board.ESP_CS) esp32_ready = DigitalInOut(board.ESP_BUSY) esp32_reset = DigitalInOut(board.ESP_RESET) # If you have an externally connected ESP32: # esp32_cs = DigitalInOut(board.D9) # esp32_ready = DigitalInOut(board.D10) # esp32_reset = DigitalInOut(board.D5) # Secondary (SCK1) SPI used to connect to WiFi board on Arduino Nano Connect RP2040 if "SCK1" in dir(board): spi = busio.SPI(board.SCK1, board.MOSI1, board.MISO1) else: spi = busio.SPI(board.SCK, board.MOSI, board.MISO) esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset) """Use below for Most Boards""" status_light = neopixel.NeoPixel(board.NEOPIXEL, 1, brightness=0.2) """Uncomment below for ItsyBitsy M4""" # status_light = dotstar.DotStar(board.APA102_SCK, board.APA102_MOSI, 1, brightness=0.2) """Uncomment below for an externally defined RGB LED (including Arduino Nano Connect)""" # import adafruit_rgbled # from adafruit_esp32spi import PWMOut # RED_LED = PWMOut.PWMOut(esp, 26) # GREEN_LED = PWMOut.PWMOut(esp, 27) # BLUE_LED = PWMOut.PWMOut(esp, 25) # status_light = adafruit_rgbled.RGBLED(RED_LED, BLUE_LED, GREEN_LED) wifi = adafruit_esp32spi_wifimanager.ESPSPI_WiFiManager(esp, secrets, status_light) counter = 0 while True: try: print("Posting data...", end="") data = counter feed = "test" payload = {"value": data} response = wifi.post( "https://io.adafruit.com/api/v2/" + secrets["aio_username"] + "/feeds/" + feed + "/data", json=payload, headers={"X-AIO-KEY": secrets["aio_key"]}, ) print(response.json()) response.close() counter = counter + 1 print("OK") except OSError as e: print("Failed to get data, retrying\n", e) wifi.reset() continue response = None time.sleep(15)
You'll note here we use a secrets.py file to manage our SSID info. The wifimanager is given the ESP32 object, secrets and a neopixel for status indication.
Note, you'll need to add a some additional information to your secrets file so that the code can query the Adafruit IO API:
aio_username
aio_key
You can go to your adafruit.io View AIO Key link to get those two values and add them to the secrets file, which will now look something like this:
# This file is where you keep secret settings, passwords, and tokens! # If you put them in the code you risk committing that info or sharing it secrets = { 'ssid' : '_your_ssid_', 'password' : '_your_wifi_password_', 'timezone' : "America/Los_Angeles", # http://worldtimeapi.org/timezones 'aio_username' : '_your_aio_username_', 'aio_key' : '_your_aio_key_', }
Next, set up an Adafruit IO feed named test
- If you do not know how to set up a feed, follow this page and come back when you've set up a feed named
test
.
We can then have a simple loop for posting data to Adafruit IO without having to deal with connecting or initializing the hardware!
Take a look at your test feed on Adafruit.io and you'll see the value increase each time the CircuitPython board posts data to it!
Text editor powered by tinymce.