

Send Raspberry Pi Data to COSM

Created by Michael Sklar

https://learn.adafruit.com/send-raspberry-pi-data-to-cosm

Last updated on 2023-08-29 02:10:15 PM EDT

©Adafruit Industries Page 1 of 19

3

4

7

10

14

19

Table of Contents

Overview

• To follow this tutorial you will need

Connecting the Cobbler to the MCP3008 and TMP36

• Why we need an ADC

• Wiring Diagram

• TMP36

Necessary Packages

COSM Account and Feed

• Setup a Account

• Add a Feed

Python Script

• The Code

• Feeds and Keys

• Run it!

COSM Graph View

©Adafruit Industries Page 2 of 19

Overview

Please Note: Xively no longer has free developer access to their system, so this

tutorial is only for historical research. Please check out our other IoT tutorials for

alternative services!

©Adafruit Industries Page 3 of 19

The combination of connecting a Raspberry Pi to COSM makes creating a internet of

things much easier than it has been in the past. The Pi with it's easy access to

ethernet / WiFi and COSM's drop dead simple usability will graph all sensor data you

send to it.

This tutorial explains how to connect a analog temperature sensor to the Pi and use a

small python script to upload that data for storage and graphing on COSM.

To follow this tutorial you will need

MCP3008 DIP-package ADC converter chip (http://adafru.it/856)

Analog Temperature Sensor TMP-36 (http://adafru.it/165)

Adafruit Pi Cobbler (http://adafru.it/914) - follow the tutorial to assemble it

Half (http://adafru.it/64) or Full-size breadboard (http://adafru.it/239)

Breadboarding wires ()

Raspberry Pi with a internet connection

Hey, that photo up there has the GPIO cable in backwards - so when you wire it up

don't follow that pic!

Connecting the Cobbler to the MCP3008

and TMP36

Why we need an ADC

The Raspberry Pi computer does not have a way to read analog inputs. It's a digital-

only computer. Compare this to the Arduino, AVR or PIC microcontrollers that often

have 6 or more analog inputs! Analog inputs are handy because many sensors are

analog outputs, so we need a way to make the Pi analog-friendly.

We'll do that by wiring up an MCP3008 chip (http://adafru.it/856) to it. The MCP3008 (

http://adafru.it/856) acts like a 'bridge' between digital and analog. It has 8 analog

inputs and the Pi can query it using 4 digital pins. That makes it a perfect addition to

the Pi for integrating simple sensors like photocells (), FSRs () or potentiometers, ther

•

•

•

•

•

•

Please Note: Xively no longer has free developer access to their system, so this

tutorial is only for historical research. Please check out our other IoT tutorials for

alternative services!

©Adafruit Industries Page 4 of 19

https://www.adafruit.com/products/856
http://www.adafruit.com/products/165
https://www.adafruit.com/products/914
https://www.adafruit.com/products/64
https://www.adafruit.com/products/239
https://www.adafruit.com/category/82
https://www.adafruit.com/products/856
https://www.adafruit.com/products/856
http://learn.adafruit.com/photocells
http://learn.adafruit.com/force-sensitive-resistor-fsr
http://learn.adafruit.com/thermistor

mistors (), etc.!

Lets check the datasheet of the MCP3008 chip. () On the first page in the lower right

corner there's a pinout diagram showing the names of the pins.

Wiring Diagram

In order to read analog data we need to use the following pins: VDD (power), DGND (

digital ground) to power the MCP3008 chip. We also need four 'SPI' data pins: DOUT

(Data Out from MCP3008), CLK (Clock pin), DIN (Data In from Raspberry Pi), and /CS

(Chip Select). Finally of course, a source of analog data, we'll be using the TMP36

temperature sensor

The MCP3008 has a few more pins we need to connect: AGND (analog ground, used

sometimes in precision circuitry, which this is not) connects to GND, and VREF (analog

voltage reference, used for changing the 'scale' - we want the full scale so tie it to 3.3

V)

Below is a wiring diagram. Connect the 3.3V cobbler pin to the left + rail and the GND

pin to the right - rail. Connect the following pins for the MCP chip

MCP3008 VDD -> 3.3V (red)

MCP3008 VREF -> 3.3V (red)

MCP3008 AGND -> GND (green)

MCP3008 CLK -> #18

MCP3008 DOUT -> #23

•

•

•

•

•

©Adafruit Industries Page 5 of 19

http://learn.adafruit.com/thermistor
http://www.adafruit.com/datasheets/MCP3008.pdf

MCP3008 DIN -> #24

MCP3008 CS -> #25

MCP3008 DGND -> GND (green)

Advanced users may note that the Raspberry Pi does have a hardware SPI interface

(the cobbler pins are labeled MISO/MOSI/SCLK/CE0/CE1). The hardware SPI interface

is super fast but not included in all distributions. For that reason we are using a bit

banged SPI implementation so the SPI pins can be any of the raspberry pi's GPIOs

(assuming you update the script). Once you get this project working with the above

pinout, feel free to edit the python code to change the pins as you'd like to have

them!

•

•

•

©Adafruit Industries Page 6 of 19

TMP36

Finally the TMP36 has three pins that need to be connected. They are numbered from

left to right in ascending order when the text of the sensor is facing you.

pin1: 3.3v

pin2: analog out --> channel0 on mcp3008 (pin1)

pin3: gnd

Necessary Packages

This guide is based on Debian's "Wheezy" release for Raspberry Pi. It was made

available in Mid July 2012. The following items must be installed in order to utilize the

Raspberry Pi's GPIO pins and to upload data to COSM.

Add the latest dev packages for Python (2.x)

•

•

•

Please Note: Xively no longer has free developer access to their system, so this

tutorial is only for historical research. Please check out our other IoT tutorials for

alternative services!

©Adafruit Industries Page 7 of 19

sudo apt-get install python-dev

Upgrade distribute (required for RPi.GPIO 0.3.1a) - [No image for this one]

sudo easy_install -U distribute

Install python-pip (Pip Installs Packages, python packages)

sudo apt-get install python-pip

Install rpi.gpio (0.3.1a) or later

sudo pip install rpi.gpio

©Adafruit Industries Page 8 of 19

Download EEML - markup language COSM accepts

wget -O geekman-python-eeml.tar.gz https://github.com/geekman/python-eeml/tarball/

master

Extract the EEML tarball

tar zxvf geekman-python-eeml.tar.gz

©Adafruit Industries Page 9 of 19

Change into the directory and install the EEML python package

cd geekman-python-eeml*

sudo python setup.py install

COSM Account and Feed

Please Note: Xively no longer has free developer access to their system, so this

tutorial is only for historical research. Please check out our other IoT tutorials for

alternative services!

©Adafruit Industries Page 10 of 19

COSM (used to be Pachube) helps connect little devices like the raspberry pi to the

internet. You will need to do the following to use COSM.

Setup a Account

Create a Feed

Save the API_KEY

Save the FEED ID

Setup a Account

You will need to create a COSM account. Click on the blue "Get Started" circle to

create a new account. It's your typical e-mail/password followed by password

verification. You will need to check your e-mail and click the verification link.

Add a Feed

Click the blue plus to add a feed.

•

•

•

•

©Adafruit Industries Page 11 of 19

Select Arduino

©Adafruit Industries Page 12 of 19

Give your new feed a title and tags.

Title: "Raspberry Pi Temperature" (or whatever you like)

Tags: raspberry pi, temperature, adc (or make up your own)

Select the "Create" button.

You need to extract the API_KEY and FEEDID from the code sample that COSM

provides. These will go into the python script that we setup on the next page. The

API_KEY lets COSM knows who is connecting and to which feed they want to send

data.

In this example the API_KEY

is: 5RNOO3ShYJxYiq2V2sgSRtz3112SAKxFQjNDQmNXc0RScz0g

The FEEDID is: 68872

Do not use those numbers, use your own!

©Adafruit Industries Page 13 of 19

Python Script

The Code

This 100+ line python script can be pasted into a editor and saved on your raspberry

pi.

The script is fairly simple. Half of the code (the readadc function) is a function that will

'talk' to the MCP3008 chip using four digital pins to 'bit bang' the SPI interface (this is

because not all Raspberry Pi's have the hardware SPI function).

The MCP3008 is a 10-bit ADC. That means it will read a value from 0 to 1023 (2^^10 =

1024 values) where 0 is the same as 'ground' and '1023' is the same as '3.3 volts'. We

don't convert the number to voltage although its easy to do that by multiplying the

number by (3.3 / 1023).

Please Note: Xively no longer has free developer access to their system, so this

tutorial is only for historical research. Please check out our other IoT tutorials for

alternative services!

©Adafruit Industries Page 14 of 19

Every 30 seconds we:

read the adc value on channel 0 (temperature sensor)

convert the adc value to millivolts: millivolts = read_adc0 * (3300.0 / 1023.0)

convert the millivolts value to a celsius temperature: temp_C = ((millivolts -

100.0) / 10.0) - 40.0

convert the celsius temperature to a fahrenheit temperature: temp_F = (

temp_C * 9.0 / 5.0) + 32)

then send the data up to pachube to be saved and graphed

•

•

•

•

•

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

#!/usr/bin/env python

import time

import os

import RPi.GPIO as GPIO

import eeml

GPIO.setmode(GPIO.BCM)

DEBUG = 1

LOGGER = 1

read SPI data from MCP3008 chip, 8 possible adc's (0 thru 7)

def readadc(adcnum, clockpin, mosipin, misopin, cspin):

 if ((adcnum > 7) or (adcnum < 0)):

 return -1

 GPIO.output(cspin, True)

 GPIO.output(clockpin, False) # start clock low

 GPIO.output(cspin, False) # bring CS low

 commandout = adcnum

 commandout |= 0x18 # start bit + single-ended bit

 commandout <<= 3 # we only need to send 5 bits here

 for i in range(5):

 if (commandout & 0x80):

 GPIO.output(mosipin, True)

 else:

 GPIO.output(mosipin, False)

 commandout <<= 1

 GPIO.output(clockpin, True)

 GPIO.output(clockpin, False)

 adcout = 0

 # read in one empty bit, one null bit and 10 ADC bits

 for i in range(12):

 GPIO.output(clockpin, True)

 GPIO.output(clockpin, False)

 adcout <<= 1

©Adafruit Industries Page 15 of 19

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

 if (GPIO.input(misopin)):

 adcout |= 0x1

 GPIO.output(cspin, True)

 adcout /= 2 # first bit is 'null' so drop it

 return adcout

change these as desired - they're the pins connected from the

SPI port on the ADC to the Cobbler

SPICLK = 18

SPIMISO = 23

SPIMOSI = 24

SPICS = 25

set up the SPI interface pins

GPIO.setup(SPIMOSI, GPIO.OUT)

GPIO.setup(SPIMISO, GPIO.IN)

GPIO.setup(SPICLK, GPIO.OUT)

GPIO.setup(SPICS, GPIO.OUT)

COSM variables. The API_KEY and FEED are specific to your COSM account and must be changed

#API_KEY = '5RNOO3ShYJxYiq2V2sgSRtz3112SAKxFQjNDQmNXc0RScz0g'

#FEED = 68872

API_KEY = 'YOUR_API_KEY'

FEED = YOUR_FEED_ID

API_URL = '/v2/feeds/{feednum}.xml' .format(feednum = FEED)

temperature sensor connected channel 0 of mcp3008

adcnum = 0

while True:

 # read the analog pin (temperature sensor LM35)

 read_adc0 = readadc(adcnum, SPICLK, SPIMOSI, SPIMISO, SPICS)

 # convert analog reading to millivolts = ADC * (3300 / 1024)

 millivolts = read_adc0 * (3300.0 / 1024.0)

 # 10 mv per degree

 temp_C = ((millivolts - 100.0) / 10.0) - 40.0

 # convert celsius to fahrenheit

 temp_F = (temp_C * 9.0 / 5.0) + 32

 # remove decimal point from millivolts

 millivolts = "%d" % millivolts

©Adafruit Industries Page 16 of 19

Feeds and Keys

Update the API_KEY and FEED values to the ones that COSM provided you.

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

 # show only one decimal place for temprature and voltage readings

 temp_C = "%.1f" % temp_C

 temp_F = "%.1f" % temp_F

 if DEBUG:

 print("read_adc0:\t", read_adc0)

 print("millivolts:\t", millivolts)

 print("temp_C:\t\t", temp_C)

 print("temp_F:\t\t", temp_F)

 print("\n")

 if LOGGER:

 # open up your cosm feed

 pac = eeml.Pachube(API_URL, API_KEY)

 #send celsius data

 pac.update([eeml.Data(0, temp_C, unit=eeml.Celsius())])

 #send fahrenheit data

 pac.update([eeml.Data(1, temp_F, unit=eeml.Fahrenheit())])

 # send data to cosm

 pac.put()

 # hang out and do nothing for 10 seconds, avoid flooding cosm

 time.sleep(30)

view rawadafruit-cosm-temp.py hosted with ❤ by GitHub

Copying over the API key incorrectly is a common (and easy to make) mistake. So

have another person check your typing if you have problems!

©Adafruit Industries Page 17 of 19

https://gist.github.com/ladyada/3249416/raw/b1a69989e3cb3bf0fc48bec761e23522df447c1a/adafruit-cosm-temp.py
https://gist.github.com/ladyada/3249416#file-adafruit-cosm-temp-py
https://github.com

Run it!

Now that you have the code modified with your keys, go ahead and make the file

executable.

$ chmod +x adafruit-cosm-temp.py

Run the script. With DEBUG = 1 (default) you will see of the adc0 value, millivolts,

celsius and fahrenheit on sent to your terminals STDOUT. These same values are also

being sent up to COSM.

$ sudo ./adafruit-cosm-temp.py

©Adafruit Industries Page 18 of 19

COSM Graph View

This is how COSM displays the temperature we are sending it (). We can see both

celsius and fahrenheit temperature graphs. The graphs have independent sliders so it

can easily be adjusted from minutes to weeks to months. There are a lot of fun

settings for viewing the graph data.

A really cool feature is that you can have triggers go off based on the data values.

COSM will alert you via HTTP POST or Twitter so that you can setup alarms if things

go bad. If we connected up more sensors the MCP3008 we could easily have more

graphs appear.

If you're having python crash due to an unstable internet connection, check out

this handy thread over at CoSM http://community.cosm.com/node/114

Please Note: Xively no longer has free developer access to their system, so this

tutorial is only for historical research. Please check out our other IoT tutorials for

alternative services!

©Adafruit Industries Page 19 of 19

http://community.cosm.com/node/114
https://cosm.com/feeds/68872

	Send Raspberry Pi Data to COSM
	Table of Contents
	Overview
	Connecting the Cobbler to the MCP3008 and TMP36
	Necessary Packages
	COSM Account and Feed
	Python Script
	COSM Graph View

	Overview
	To follow this tutorial you will need
	Connecting the Cobbler to the MCP3008 and TMP36
	Why we need an ADC
	Wiring Diagram
	TMP36
	Necessary Packages
	COSM Account and Feed
	Setup a Account
	Add a Feed
	Python Script
	The Code
	Feeds and Keys
	Run it!
	COSM Graph View

