

Controlling a Servo with a BeagleBone

Black

Created by Simon Monk

https://learn.adafruit.com/controlling-a-servo-with-a-beaglebone-black

Last updated on 2023-08-29 02:21:32 PM EDT

©Adafruit Industries Page 1 of 11

3

3

7

7

8

9

10

11

Table of Contents

Overview

You Will Need

Installing the Python Library

Wiring

The Python Console

Writing a Program

Servo Motors

Next Steps

©Adafruit Industries Page 2 of 11

Overview

In this tutorial, you will learn how to control a servo from Python using a BeagleBone

Black (BBB).

A Python test program will allow you to set the angle of the servo between 0 and 180

degrees.

python servo.py

Angle (0 to 180 x to exit):90

Angle (0 to 180 x to exit):180

Angle (0 to 180 x to exit):0

Angle (0 to 180 x to exit):x

You Will Need

To try out this tutorial, you will need:

©Adafruit Industries Page 3 of 11

BeagleBone Black

Standard Servo

©Adafruit Industries Page 4 of 11

http://www.adafruit.com/products/1278
http://www.adafruit.com/products/155

or a Micro Servo

1 kΩ Resistor (optional)

5V Power Supply

©Adafruit Industries Page 5 of 11

http://www.adafruit.com/products/169
http://www.adafruit.com/products/276

Female Screw Terminal adaptor

Half-sized Breadboard

©Adafruit Industries Page 6 of 11

http://www.adafruit.com/products/368
http://www.adafruit.com/products/64

The 1 kΩ resistor is not strictly necessary, but will protect your BBB from damage is

something should go wrong in the servo.

Installing the Python Library

This tutorial uses Ångström Linux, the operating system that comes pre-installed on

the BBB.

Follow the instructions here, to install the Python IO BBIO library. http://

learn.adafruit.com/setting-up-io-python-library-on-beaglebone-black ()

Wiring

Wire up the solderless breadboard using the header leads as shown below.

Male to Male Jumpers

©Adafruit Industries Page 7 of 11

http://www.adafruit.com/products/759
http://learn.adafruit.com/setting-up-io-python-library-on-beaglebone-black
http://learn.adafruit.com/setting-up-io-python-library-on-beaglebone-black

You can use male to male jumper wires from the screw terminal to the breadboard.

Connect an external 5VDC power supply to DC power jack

We will use pin P8_13 as the PWM output to control the servo. The only other

connection that we need from the BBB is GND.

There is more information about all the pins available on the P8 and P9 connecters

down each side of the BBB here: http://stuffwemade.net/hwio/beaglebone-pin-

reference/ ()

The Python Console

Before writing a Python program to allow us to set the servo to an angle between 0

and 180, we can try some experiments in the Python Console.

To launch the Python Console type:

python

Python 2.7.3 (default, Apr 3 2013, 21:37:23)

[GCC 4.7.3 20130205 (prerelease)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>>

First, we need to import the library, so enter the command:

>>> import Adafruit_BBIO.PWM as PWM

©Adafruit Industries Page 8 of 11

http://stuffwemade.net/hwio/beaglebone-pin-reference/
http://stuffwemade.net/hwio/beaglebone-pin-reference/

Now enter the commands below into the Python Console one at a time, and you

should see the servo change position.

>>> PWM.start("P8_13", 95.0, 60)

>>> PWM.set_duty_cycle("P8_13", 97.0)

>>> PWM.stop("P8_13")

>>> PWM.cleanup()

NOTE: If your servo doesn't move you might need to change the polarity of the PWM

signal and try again. Add a 4th parameter to the PWM.start function with a value of 1

(one), this will invert the PWM signal so it's low when normally high and vice versa.

Here's the same code but with the inverse parameter set:

>>> PWM.start("P8_13", 95.0, 60, 1)

>>> PWM.set_duty_cycle("P8_13", 97.0)

>>> PWM.stop("P8_13")

>>> PWM.cleanup()

Writing a Program

Exit the Python Console by typing:

>>> exit()

This should take you back to the Linux prompt.

Enter the following command to create a new files called servo.py

nano servo.py

Now paste the code below into the editor window.

NOTE: Don't forget to add the inverse parameter to the PWM.start function if you

found it was required to make your servos move in the previous page!

import Adafruit_BBIO.PWM as PWM

servo_pin = "P8_13"

duty_min = 3

duty_max = 14.5

duty_span = duty_max - duty_min

PWM.start(servo_pin, (100-duty_min), 60.0)

while True:

 angle = raw_input("Angle (0 to 180 x to exit):")

 if angle == 'x':

 PWM.stop(servo_pin)

©Adafruit Industries Page 9 of 11

 PWM.cleanup()

 break

 angle_f = float(angle)

 duty = 100 - ((angle_f / 180) * duty_span + duty_min)

 PWM.set_duty_cycle(servo_pin, duty)

To start the program, enter the command:

python servo.py

Angle (0 to 180 x to exit):90

Angle (0 to 180 x to exit):180

Angle (0 to 180 x to exit):0

Angle (0 to 180 x to exit):x

Entering a value between 0 and 180 will set the servo's angle accordingly.

When you want to stop the program, enter 'x'.

You may find that your servo judders at one end of its range or does not give a full

180 degree range of movement. If this is the case, try tweaking the values in duty_min

and duty_max.

When you enter 'x', the PWM is stopped and 'cleanup' is run, otherwise the PWM

signal would continue in the background even after the program had stopped

running.

Servo Motors

The position of the servo motor is set by the length of a pulse. The servo expects to

receive a pulse roughly every 20 milliseconds. If that pulse is high for 1 millisecond or

less, then the servo angle will be zero, if it is 1.5 milliseconds, then it will be at its

centre position and if it is 2 milliseconds or more it will be at 180 degrees.

©Adafruit Industries Page 10 of 11

This example uses the PWM feature of the GPIO library to generate the pulses for the

servo. The PWM frequency is set to 60 Hz so that the servo will receive a pulse

roughly every 17 milliseconds.

The length of the pulse is changed by adjusting the duty cycle over the fairly narrow

range of 3 to 14.5 percent. These figures were estimated and then tweaked a bit to

give a maximum range of the servo being used.

Next Steps

If you wanted to, you could attach three more servos to the GPIO pins P8_19, P9_14

and P9_16. They could all share the same external 5-6VDC power supply without any

problem.

About the Author.

As well as contributing lots of tutorials about Raspberry Pi, Arduino and now

BeagleBone Black, Simon Monk writes books about open source hardware. You will

find his books for sale here () at Adafruit.

"Continuous" Servos, also called "360 Servos" work very similarly, so you can use

them just like a position servo. Instead of the absolute position, a continuous

servo will adjust its speed with different pulse widths

©Adafruit Industries Page 11 of 11

http://www.adafruit.com/index.php?main_page=adasearch&q=simon+monk

	Controlling a Servo with a BeagleBone Black
	Table of Contents
	Overview
	You Will Need
	Installing the Python Library
	Wiring
	The Python Console
	Writing a Program
	Servo Motors
	Next Steps

	Overview
	You Will Need
	Installing the Python Library
	Wiring
	The Python Console
	Writing a Program
	Servo Motors
	Next Steps

