

Adafruit's Raspberry Pi Lesson 8. Using a

Servo Motor

Created by Simon Monk

https://learn.adafruit.com/adafruits-raspberry-pi-lesson-8-using-a-servo-motor

Last updated on 2023-08-29 02:15:03 PM EDT

©Adafruit Industries Page 1 of 11

3

3

7

7

8

11

Table of Contents

Overview

Parts

• Part

• Qty

Servo Motors

Hardware

Software

• Python Example!

Test & Configure

©Adafruit Industries Page 2 of 11

Overview

This lesson describes how to control a single servo motor using Python.

Servo motors are controlled by pulses of varying lengths. This requires fairly accurate

timing. The Raspberry Pi has one pin that generates pulses in hardware, without

having to rely on the operating system.

Parts

To build this project, you will need the following parts.

Part Qty

©Adafruit Industries Page 3 of 11

Raspberry Pi 1

Cobbler Breakout Board

and IDC cable
1

©Adafruit Industries Page 4 of 11

file:///assets/3491
file:///assets/3491

Set of male to male

jumper leads
1

Half-size breadboard 1

©Adafruit Industries Page 5 of 11

Servo 1

4 x AA or AAA battery

holder and batteries.
1

©Adafruit Industries Page 6 of 11

Servo Motors

The position of the servo motor is set by the length of a pulse. The servo expects to

receive a pulse roughly every 20 milliseconds. If that pulse is high for 1 millisecond,

then the servo angle will be zero, if it is 1.5 milliseconds, then it will be at its centre

position and if it is 2 milliseconds it will be at 180 degrees.

The end points of the servo can vary and many servos only turn through about 170

degrees. You can also buy 'continuous' servos that can rotate through the full 360

degrees.

Hardware

There is only one pin on the Pi that is capable of producing pulses in this way (GPIO

pin 18). This will be connected to the control pin of the servo. The power to the servo

is provided by an external battery as powering the servo from the Pi itself is likely to

cause it to crash as the Servo draws too much current as it starts to move. Servos

require 4.8-6V DC power to the motor, but the signal level (pulse output) can be 3.3V,

which is how its OK to just connect the signal line directly to the GPIO output of the

Pi.

©Adafruit Industries Page 7 of 11

The Pi Cobbler is used to link the Raspberry Pi to the breadboard. If you have not

used the Cobbler before take a look at Lesson 4 () in this series.

Servo motors generally come with three pin sockets attached. The red and brown

sockets supply power (positive to red) and the third yellow or orange socket is for the

control signal. To link the socket to the breadboard, use the male-to-male jumper

wires.

Software

We'll be using the great wiringPi tool gpio to control the servo. Begin by installing gpi

o with

sudo apt-get install -y wiringpi

©Adafruit Industries Page 8 of 11

http://learn.adafruit.com/adafruits-raspberry-pi-lesson-4-gpio-setup

Set pin #18 to be a PWM output

gpio -g mode 18 pwm

Pin #18 has PWM output, but you have to set it to be the right frequency output.

Servo's want 50 Hz frequency output

For the Raspberry Pi PWM module, the PWM Frequency in Hz = 19,200,000 Hz /

pwmClock / pwmRange

If pwmClock is 192 and pwmRange is 2000 we'll get the PWM frequency = 50 Hz (thx

to kev for the numbers! ())

Now you can tell gpio to set the PWM clock to those numbers:

gpio pwm-ms

gpio pwmc 192

gpio pwmr 2000

Now you can set the servo to all the way to the left (1.0 milliseconds) with

gpio -g pwm 18 100

Set the servo to the middle (1.5 ms) with

gpio -g pwm 18 150

And all the way to the right (2.0ms) with

gpio -g pwm 18 200

Servos often 'respond' to a wider range than 1.0-2.0 milliseconds so try it with ranges

of 50 (0.5ms) to 250 (2.5ms)

©Adafruit Industries Page 9 of 11

http://raspberrypi.stackexchange.com/questions/4906/control-hardware-pwm-frequency
http://raspberrypi.stackexchange.com/questions/4906/control-hardware-pwm-frequency

Of course you can try any number between 50 and 250! so you get a range of about

200 positions

Note that the Raspberry Pi PWM is not necessarily a 'stable' output, and there might

be some jitter! For a steady PWM signal, you'll want to check out a dedicated Servo

HAT. (http://adafru.it/2327)

Python Example!

You can also use wiringPi in python! Run

sudo apt-get install -y python-pip

sudo pip install wiringpi

The Python program to make the servo sweep back and forth is listed below:

Servo Control

import time

import wiringpi

use 'GPIO naming'

wiringpi.wiringPiSetupGpio()

set #18 to be a PWM output

wiringpi.pinMode(18, wiringpi.GPIO.PWM_OUTPUT)

set the PWM mode to milliseconds stype

wiringpi.pwmSetMode(wiringpi.GPIO.PWM_MODE_MS)

divide down clock

wiringpi.pwmSetClock(192)

wiringpi.pwmSetRange(2000)

delay_period = 0.01

while True:

 for pulse in range(50, 250, 1):

 wiringpi.pwmWrite(18, pulse)

 time.sleep(delay_period)

 for pulse in range(250, 50, -1):

 wiringpi.pwmWrite(18, pulse)

 time.sleep(delay_period)

We're basically using the wiringpi functions but within python, so its easy to practice

with the gpio utility and then use the matching commands in python

A variable (delay_period) is used to contain the time in seconds between each step of

the servo.

©Adafruit Industries Page 10 of 11

https://www.adafruit.com/products/2327
https://www.adafruit.com/products/2327

The while loop will just continue forever or until the program is interrupted by

pressing CTRL-C. Within the loop there are two near identical 'for' loops. The first

counts the pulse width up from 5.0ms to 2.5ms and the second sets the pulse with

starting with 2.5m and counts down to 0.5ms, moving the servo arm back and forth.

To install the software, connect to your Pi using SSH and then type the command:

$ nano servo.py

Paste the code above into the editor and then do CTRL-X and Y to save the file.

To run the servo program just type the following command into your SSH window:

$ sudo python servo.py

The servo should start to move straight away.

Test & Configure

If you want to make the servo move faster, try changing delay_period to a smaller

value, say 0.001. Then to slow it down try increasing it to 0.1.

If you want to control more than one servo, then the easiest way to do this is to use

something like the Adafruit I2C 16 channel servo / pwm controller (http://adafru.it/815).

This tutorial () explains how to use it.

©Adafruit Industries Page 11 of 11

http://www.adafruit.com/products/815
http://learn.adafruit.com/adafruit-16-channel-servo-driver-with-raspberry-pi/overview

	Adafruit's Raspberry Pi Lesson 8. Using a Servo Motor
	Table of Contents
	Overview
	Parts
	Servo Motors
	Hardware
	Software
	Test & Configure

	Overview
	Parts
	Part
	Qty

	Servo Motors
	Hardware
	Software
	Python Example!
	Test & Configure

